- Сумма и разность синусов и косинусов: вывод формул, примеры
- Формулы суммы и разности синусов и косинусов
- Вывод формул суммы и разности синусов и косинусов
- Вывод формулы суммы синусов
- Вывод формулы разности синусов
- Вывод формулы суммы косинусов
- Вывод формулы разности косинусов
- Примеры решения практических задач
- Формулы сложения: доказательство, примеры
- Основные формулы сложения в тригонометрии
- Доказательства формул сложения
- Формулы суммы и разности синусов и косинусов
- Формулы сложения.
- Геометрическое определение синуса и косинуса
- Тригонометрические функции суммы и разности углов
- Список формул
- Формулы двойного угла.
- Формулы сложения
- Примеры использования
- Формулы понижения степени для квадратов тригонометрических функций
- Основные тригонометрические тождества
- Вывод формул
- Соотношение между косинусом и тангенсом:
- Соотношение между синусом и котангенсом:
- Формулы приведения
Сумма и разность синусов и косинусов: вывод формул, примеры
Формулы суммы и разности синусов и косинусов для двух углов α и β позволяют перейти от суммы указанных углов к произведению углов α + β 2 и α — β 2 . Сразу отметим, что не стоит путать формулы суммы и разности синусов и косинусов с формулами синусов и косинусов суммы и разности. Ниже мы перечислим эти формулы, приведем их вывод и покажем примеры применения для конкретных задач.
Формулы суммы и разности синусов и косинусов
Запишем, как выглядят формулы суммы и разности для синусов и для косинусов
Формулы суммы и разности для синусов
sin α + sin β = 2 sin α + β 2 cos α — β 2 sin α — sin β = 2 sin α — β 2 cos α + β 2
cos α + cos β = 2 cos α + β 2 cos α — β 2 cos α — cos β = — 2 sin α + β 2 cos α — β 2 , cos α — cos β = 2 sin α + β 2 · β — α 2
Данные формулы справедливы для любых углов α и β . Углы α + β 2 и α — β 2 называются соответственно полусуммой и полуразностью углов альфа и бета. Дадим формулировку для каждой формулы.
Определения формул сумм и разности синусов и косинусов
Сумма синусов двух углов равна удвоенному произведению синуса полусуммы этих углов на косинус полуразности.
Разность синусов двух углов равна удвоенному произведению синуса полуразности этих углов на косинус полусуммы.
Сумма косинусов двух углов равна удвоенному произведению косинуса полусуммы и косинуса полуразности этих углов.
Разность косинусов двух углов равна удвоенному произведению синуса полусуммы на косинус полуразности этих углов, взятому с отрицательным знаком.
Вывод формул суммы и разности синусов и косинусов
Для вывода формул суммы и разности синуса и косинуса двух углов используются формулы сложения. Приведем их ниже
sin ( α + β ) = sin α · cos β + cos α · sin β sin ( α — β ) = sin α · cos β — cos α · sin β cos ( α + β ) = cos α · cos β — sin α · sin β cos ( α — β ) = cos α · cos β + sin α · sin β
Также представим сами углы в виде суммы полусумм и полуразностей.
α = α + β 2 + α — β 2 = α 2 + β 2 + α 2 — β 2 β = α + β 2 — α — β 2 = α 2 + β 2 — α 2 + β 2
Переходим непосредственно к выводу формул суммы и разности для sin и cos.
Вывод формулы суммы синусов
В сумме sin α + sin β заменим α и β на выражения для этих углов, приведенные выше. Получим
sin α + sin β = sin α + β 2 + α — β 2 + sin α + β 2 — α — β 2
Теперь к первому выражению применяем формулу сложения, а ко второму — формулу синуса разностей углов (см. формулы выше)
sin α + β 2 + α — β 2 = sin α + β 2 cos α — β 2 + cos α + β 2 sin α — β 2 sin α + β 2 — α — β 2 = sin α + β 2 cos α — β 2 — cos α + β 2 sin α — β 2 sin α + β 2 + α — β 2 + sin α + β 2 — α — β 2 = sin α + β 2 cos α — β 2 + cos α + β 2 sin α — β 2 + sin α + β 2 cos α — β 2 — cos α + β 2 sin α — β 2 Раскроем скобки, приведем подобные слагаемые и получим искомую формулу
sin α + β 2 cos α — β 2 + cos α + β 2 sin α — β 2 + sin α + β 2 cos α — β 2 — cos α + β 2 sin α — β 2 = = 2 sin α + β 2 cos α — β 2
Действия по выводу остальных формул аналогичны.
Вывод формулы разности синусов
sin α — sin β = sin α + β 2 + α — β 2 — sin α + β 2 — α — β 2 sin α + β 2 + α — β 2 — sin α + β 2 — α — β 2 = sin α + β 2 cos α — β 2 + cos α + β 2 sin α — β 2 — sin α + β 2 cos α — β 2 — cos α + β 2 sin α — β 2 = = 2 sin α — β 2 cos α + β 2
Вывод формулы суммы косинусов
Вывод формулы разности косинусов
cos α — cos β = cos α + β 2 + α — β 2 — cos α + β 2 — α — β 2 cos α + β 2 + α — β 2 — cos α + β 2 — α — β 2 = cos α + β 2 cos α — β 2 — sin α + β 2 sin α — β 2 — cos α + β 2 cos α — β 2 + sin α + β 2 sin α — β 2 = = — 2 sin α + β 2 sin α — β 2
Примеры решения практических задач
Для начала, сделаем проверку одной из формул, подставив в нее конкретные значения углов. Пусть α = π 2 , β = π 6 . Вычислим значение суммы синусов этих углов. Сначала воспользуемся таблицей основных значений тригонометрических функций, а затем применим формулу для суммы синусов.
Пример 1. Проверка формулы суммы синусов двух углов
α = π 2 , β = π 6 sin π 2 + sin π 6 = 1 + 1 2 = 3 2 sin π 2 + sin π 6 = 2 sin π 2 + π 6 2 cos π 2 — π 6 2 = 2 sin π 3 cos π 6 = 2 · 3 2 · 3 2 = 3 2
Рассмотрим теперь случай, когда значения углов отличаются от основных значений, представленных в таблице. Пусть α = 165 ° , β = 75 ° . Вычислим значение разности синусов этих углов.
Пример 2. Применение формулы разности синусов
α = 165 ° , β = 75 ° sin α — sin β = sin 165 ° — sin 75 ° sin 165 — sin 75 = 2 · sin 165 ° — 75 ° 2 cos 165 ° + 75 ° 2 = = 2 · sin 45 ° · cos 120 ° = 2 · 2 2 · — 1 2 = 2 2
С помощью формул суммы и разности синусов и косинусов можно перейти от суммы или разности к произведению тригонометрических функций. Часто эти формулы называют формулами перехода от суммы к произведению. Формулы суммы и разности синусов и косинусов широко используются при решении тригонометрических уравнений и при преобразовании тригонометрических выражений.
Источник
Формулы сложения: доказательство, примеры
Продолжаем наш разговор про наиболее употребляемые формулы в тригонометрии. Важнейшие из них – формулы сложения.
Формулы сложения позволяют выразить функции разности или суммы двух углов с помощью тригонометрических функций этих углов.
Для начала мы приведем полный список формул сложения, потом докажем их и разберем несколько наглядных примеров.
Основные формулы сложения в тригонометрии
Выделяют восемь основных формул: синус суммы и синус разности двух углов, косинусы суммы и разности, тангенсы и котангенсы суммы и разности соответственно. Ниже приведены их стандартные формулировки и вычисления.
1.Синус суммы двух углов можно получить следующим образом:
— вычисляем произведение синуса первого угла на косинус второго;
— умножаем косинус первого угла на синус первого;
— складываем получившиеся значения.
Графическое написание формулы выглядит так: sin ( α + β ) = sin α · cos β + cos α · sin β
2. Синус разности вычисляется почти так же, только полученные произведения нужно не сложить, а вычесть друг из друга. Таким образом, вычисляем произведения синуса первого угла на косинус второго и косинуса первого угла на синус второго и находим их разность. Формула пишется так: sin ( α — β ) = sin α · cos β + sin α · sin β
3. Косинус суммы. Для него находим произведения косинуса первого угла на косинус второго и синуса первого угла на синус второго соответственно и находим их разность: cos ( α + β ) = cos α · cos β — sin α · sin β
4. Косинус разности: вычисляем произведения синусов и косинусов данных углов, как и ранее, и складываем их. Формула: cos ( α — β ) = cos α · cos β + sin α · sin β
5. Тангенс суммы. Эта формула выражается дробью, в числителе которой – сумма тангенсов искомых углов, а в знаменателе – единица, из которой вычитается произведение тангенсов искомых углов. Все понятно из ее графической записи: t g ( α + β ) = t g α + t g β 1 — t g α · t g β
6. Тангенс разности. Вычисляем значения разности и произведения тангенсов данных углов и поступаем с ними схожим образом. В знаменателе мы прибавляем к единице, а не наоборот: t g ( α — β ) = t g α — t g β 1 + t g α · t g β
7. Котангенс суммы. Для вычислений по этой формуле нам понадобятся произведение и сумма котангенсов данных углов, с которыми мы поступаем следующим образом: c t g ( α + β ) = — 1 + c t g α · c t g β c t g α + c t g β
8. Котангенс разности. Формула схожа с предыдущей, но в числителе и знаменателе – минус, а не плюс c t g ( α — β ) = — 1 — c t g α · c t g β c t g α — c t g β .
Вы, наверное, заметили, что эти формулы попарно схожи. При помощи знаков ± (плюс-минус) и ∓ (минус-плюс) мы можем сгруппировать их для удобства записи:
sin ( α ± β ) = sin α · cos β ± cos α · sin β cos ( α ± β ) = cos α · cos β ∓ sin α · sin β t g ( α ± β ) = t g α ± t g β 1 ∓ t g α · t g β c t g ( α ± β ) = — 1 ± c t g α · c t g β c t g α ± c t g β
Соответственно, мы имеем одну формулу записи для суммы и разности каждого значения, просто в одном случае мы обращаем внимание на верхний знак, в другом – на нижний.
Мы можем взять любые углы α и β , и формулы сложения для косинуса и синуса подойдут для них. Если мы можем правильно определить значения тангенсов и котангенсов этих углов, то формулы сложения для тангенса и котангенса будут также для них справедливы.
Доказательства формул сложения
Как и большинство понятий в алгебре, формулы сложения могут быть доказаны. Первая формула, которую мы докажем, — формула косинуса разности. Из нее потом можно легко вывести остальные доказательства.
Уточним основные понятия. Нам понадобится единичная окружность. Она получится, если мы возьмем некую точку A и повернем вокруг центра (точки O ) углы α и β . Тогда угол между векторами O A 1 → и O A → 2 будет равняться ( α — β ) + 2 π · z или 2 π — ( α — β ) + 2 π · z ( z – любое целое число). Получившиеся вектора образуют угол, который равен α — β или 2 π — ( α — β ) , или он может отличаться от этих значений на целое число полных оборотов. Взгляните на рисунок:
Мы воспользовались формулами приведения и получили следующие результаты:
cos ( ( α — β ) + 2 π · z ) = cos ( α — β ) cos ( 2 π — ( α — β ) + 2 π · z ) = cos ( α — β )
Итог: косинус угла между векторами O A 1 → и O A 2 → равняется косинусу угла α — β , следовательно, cos ( O A 1 → O A 2 → ) = cos ( α — β ) .
Далее мы переходим к самому доказательству формулы косинуса разности.
Вспомним определения синуса и косинуса: синус — функция угла, равная отношению катета противолежащего угла к гипотенузе, косинус – это синус дополнительного угла. Следовательно, точки A 1 и A 2 имеют координаты ( cos α , sin α ) и ( cos β , sin β ) .
O A 1 → = ( cos α , sin α ) и O A 2 → = ( cos β , sin β )
Если непонятно, взгляните на координаты точек, расположенных в начале и конце векторов.
Длины векторов равны 1 , т.к. у нас единичная окружность.
Разберем теперь скалярное произведение векторов O A 1 → и O A 2 → . В координатах оно выглядит так:
( O A 1 → , O A 2 ) → = cos α · cos β + sin α · sin β
Из этого мы можем вывести равенство:
cos ( α — β ) = cos α · cos β + sin α · sin β
Таким образом, формула косинуса разности доказана.
Теперь мы докажем следующую формулу – косинуса суммы. Это проще, поскольку мы можем воспользоваться предыдущими расчетами. Возьмем представление α + β = α — ( — β ) . У нас есть:
cos ( α + β ) = cos ( α — ( — β ) ) = = cos α · cos ( — β ) + sin α · sin ( — β ) = = cos α · cos β + sin α · sin β
Это и есть доказательство формулы косинуса суммы. В последней строчке использовано свойство синуса и косинуса противоположных углов.
Формулу синуса суммы можно вывести из формулы косинуса разности. Возьмем для этого формулу приведения:
вида sin ( α + β ) = cos ( π 2 ( α + β ) ) . Так
sin ( α + β ) = cos ( π 2 ( α + β ) ) = cos ( ( π 2 — α ) — β ) = = cos ( π 2 — α ) · cos β + sin ( π 2 — α ) · sin β = = sin α · cos β + cos α · sin β
А вот доказательство формулы синуса разности:
sin ( α — β ) = sin ( α + ( — β ) ) = sin α · cos ( — β ) + cos α · sin ( — β ) = = sin α · cos β — cos α · sin β
Обратите внимание на использование свойств синуса и косинуса противоположных углов в последнем вычислении.
Далее нам нужны доказательства формул сложения для тангенса и котангенса. Вспомним основные определения (тангенс – отношение синуса к косинусу, а котангенс –наоборот) и возьмем уже выведенные заранее формулы. У нас получилось:
t g ( α + β ) = sin ( α + β ) cos ( α + β ) = sin α · cos β + cos α · sin β cos α · cos β — sin α · sin β
У нас получилась сложная дробь. Далее нам нужно разделить ее числитель и знаменатель на cos α · cos β , учитывая что cos α ≠ 0 и cos β ≠ 0 , получаем:
sin α · cos β + cos α · sin β cos α · cos β cos α · cos β — sin α · sin β cos α · cos β = sin α · cos β cos α · cos β + cos α · sin β cos α · cos β cos α · cos β cos α · cos β — sin α · sin β cos α · cos β
Теперь сокращаем дроби и получаем формулу следующего вида: sin α cos α + sin β cos β 1 — sin α cos α · s i n β cos β = t g α + t g β 1 — t g α · t g β .
У нас получилось t g ( α + β ) = t g α + t g β 1 — t g α · t g β . Это и есть доказательство формулы сложения тангенса.
Следующая формула, которую мы будем доказывать – формула тангенса разности. Все наглядно показано в вычислениях:
t g ( α — β ) = t g ( α + ( — β ) ) = t g α + t g ( — β ) 1 — t g α · t g ( — β ) = t g α — t g β 1 + t g α · t g β
Формулы для котангенса доказываются схожим образом:
c t g ( α + β ) = cos ( α + β ) sin ( α + β ) = cos α · cos β — sin α · sin β sin α · cos β + cos α · sin β = = cos α · cos β — sin α · sin β sin α · sin β sin α · cos β + cos α · sin β sin α · sin β = cos α · cos β sin α · sin β — 1 sin α · cos β sin α · sin β + cos α · sin β sin α · sin β = = — 1 + c t g α · c t g β c t g α + c t g β
Далее:
c t g ( α — β ) = c t g ( α + ( — β ) ) = — 1 + c t g α · c t g ( — β ) c t g α + c t g ( — β ) = — 1 — c t g α · c t g β c t g α — c t g β
Примеры сложения с помощью тригонометрических формул
В этом пункте мы рассмотрим, как применить эти сложные на вид вычисления на практике. Их можно использовать:
— при преобразовании тригонометрических выражений;
— для вычисления точных значений синуса, косинуса, тангенса и котангенса углов, которые отличаются от основных ( 0 , π 6 , π 4 , π 3 , π 2 );
— для доказательства других тригонометрических формул, например, формулы двойного угла.
Разберем задачи с использованием формул сложения.
Задача: Вычислите точное значение тангенса 15 градусов.
Решение
Для наглядности мы 15 градусов можно представить в виде разности 45 — 30 . В этом случае решение задачи можно получить с помощью формулы тангенса разности. Возьмем формулу, которую мы приводили выше, и укажем в ней имеющиеся нам известные значения: t g 15 ° = t g ( 45 ° — 30 ° ) = t g 45 ° — t g 30 ° 1 + t g 45 ° · t g 30 °
Вычисляем ответ: t g 45 ° — t g 30 ° 1 + t g 45 ° · t g 30 ° = 1 — 3 3 1 + 1 · 3 3 = = 3 — 1 3 + 1 = ( 3 — 1 ) · ( 3 — 1 ) ( 3 + 1 ) · ( 3 — 1 ) = ( 3 ) 2 — 2 3 + 1 ( 3 ) 2 — 1 = 2 — 3
Ответ: t g 15 ° = 2 — 3
Задача: Выберем формулу сложения для проверки формулы приведения следующего вида: sin ( π 2 + α ) = cos α
Нам подойдет формула синуса суммы. Итого: sin ( π 2 + α ) = sin π 2 · cos α + cos π 2 · sin α = 1 · cos α + 0 · sin α = cos α
Ответ: sin ( π 2 + α ) = cos α — наша формула доказана.
Источник
Формулы суммы и разности синусов и косинусов
Формулы сложения.
sin (α + β) = sin α · cos β + sin β · cos α
sin (α – β) = sin α · cos β – sin β · cos α
cos (α + β) = cos α · cos β – sin α · sin β
cos (α – β) = cos α · cos β + sin α · sin β
tg (α + β) = (tg α + tg β) ÷ (1 – tg α · tg β)
tg (α – β) = (tg α – tg β) ÷ (1 + tg α · tg β)
ctg (α + β) = (ctg α · ctg β + 1) ÷ (ctg β – ctg α)
ctg (α – β) = (ctg α · ctg β – 1) ÷ (ctg β + ctg α)
Геометрическое определение синуса и косинуса
|BD| – длина дуги окружности с центром в точке A.
α – угол, выраженный в радианах.
Синус ( sin α ) – это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|. Косинус ( cos α ) – это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.
Тригонометрические функции суммы и разности углов
tg( α + β ) = | tg α + tg β |
1 – tg α · tg β |
tg( α – β ) = | tg α – tg β |
1 + tg α · tg β |
ctg( α + β ) = | ctg α · ctg β – 1 |
ctg β + ctg α |
ctg( α – β ) = | ctg α · ctg β + 1 |
ctg β – ctg α |
Список формул
Запишем формулы суммы и разности синусов и косинусов. Как Вы понимаете, их четыре штуки: две для синусов и две для косинусов.
Теперь дадим их формулировки. При формулировании формул суммы и разности синусов и косинусов угол называют полусуммой углов
и
, а угол
– полуразностью. Итак,
- Формула суммы синусов
: сумма синусов двух углов равна удвоенному произведению синуса полусуммы этих углов на косинус их полуразности.
- Формула разности синусов
: разность синусов двух углов равна удвоенному произведению синуса полуразности этих углов на косинус их полусуммы.
- Сумма косинусов
: сумма косинусов двух углов равна удвоенному произведению косинуса полусуммы на косинус полуразности этих углов.
- Формула разности косинусов
: разность косинусов двух углов равна удвоенному произведению синуса полусуммы на синус полуразности этих углов, взятому со знаком минус.
Стоит отметить, что формулы суммы и разности синусов и косинусов справедливы для любых углов и
.
Формулы двойного угла.
tg 2α = (2tg α) ÷ (1 – tg² α)
Формулы сложения
Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.
Примеры использования
Разберем несколько примеров использования формул суммы синусов и косинусов, а также разности синусов и косинусов.
Для примера проверим справедливость формулы суммы синусов вида , взяв
и
. Чтобы это сделать, вычислим значения левой и правой частей формулы для данных углов. Так как
и
(при необходимости смотрите таблицу основных значений синусов и косинусов ), то
. При
и
имеем
и
, тогда . Таким образом, значения левой и правой частей формулы суммы синусов для
и
совпадают, что подтверждает справедливость этой формулы.
В некоторых случаях использование формул суммы и разности синусов и косинусов позволяет вычислять значения тригонометрических выражений, когда углы отличны от основных углов (). Приведем решение примера, подтверждающего эту мысль.
Вычислите точное значение разности синусов 165 и 75 градусов.
Точных значений синусов 165 и 75 градусов мы не знаем, поэтому непосредственно вычислить значение заданной разности мы не можем. Но ответить на вопрос задачи нам позволяет формула разности синусов . Действительно, полусумма углов 165 и 75 градусов равна 120 , а полуразность равна 45 , а точные значения синуса 45 градусов и косинуса 120 градусов известны.
Таким образом, имеем
.
Несомненно, главная ценность формул суммы и разности синусов и косинусов заключается в том, что они позволяют перейти от суммы и разности к произведению тригонометрических функций (по этой причине эти формулы часто называют формулами перехода от суммы к произведению тригонометрических функций). А это в свою очередь может быть полезно, например, при преобразовании тригонометрических выражений или при решении тригонометрический уравнений. Но эти темы требуют отдельного разговора.
Формулы понижения степени для квадратов тригонометрических функций
Формула | Название формулы |
Выражение квадрата синуса через косинус двойного угла | |
Выражение квадрата косинуса через косинус двойного угла | |
Выражение квадрата тангенса через косинус двойного угла |
Выражение квадрата синуса через косинус двойного угла |
Выражение квадрата косинуса через косинус двойного угла |
Выражение квадрата тангенса через косинус двойного угла |
Основные тригонометрические тождества
Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.
Вывод формул
Для вывода формул суммы и разности синусов можно использовать формулы сложения , в частности, формулы
синуса суммы ,
синуса разности ,
косинуса суммы и
косинуса разности .
Также нам потребуется представление углов и
в виде
и
. Такое представление правомерно, так как
и
для любых углов
и
.
Теперь подробно разберем вывод формулы суммы синусов двух углов вида .
Сначала в сумме заменяем
на
, а
на
, при этом получаем
. Теперь к
применяем формулу синуса суммы, а к
– формулу синуса разности:
После приведения подобных слагаемых получаем . В итоге имеем формулу суммы синусов вида
.
Для вывода остальных формул нужно лишь проделать аналогичные действия. Приведем вывод формул разности синусов, а также суммы и разности косинусов:
Для разности косинусов мы привели формулы двух видов или
. Они эквивалентны, так как
, что следует из свойств синусов противоположных углов .
Итак, мы разобрали доказательство всех формул суммы и разности синусов и косинусов.
Соотношение между косинусом и тангенсом:
1/cos 2 α−tan 2 α=1 или sec 2 α−tan 2 α=1.
Данная формула является следствием основного тригонометрического тождества и получается из него делением левой и правой части на cos2α. Предполагается, что α≠π/2+πn,n∈Z.
Соотношение между синусом и котангенсом:
1/sin 2 α−cot 2 α=1 или csc 2 α−cot 2 α=1.
Эта формула также следует из основного тригонометрического тождества (получается из него делением левой и правой части на sin2α. Здесь предполагается, что α≠πn,n∈Z.
Формулы приведения
Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.
Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье формулы приведения .
Источник