Спросите Итана: почему скорость света такая, какая есть?
Вне зависимости от цвета, длины волны или энергии, скорость, с которой свет перемещается в вакууме, остаётся постоянной. Она не зависит от местоположения или направлений в пространстве и времени
Ничто во Вселенной не способно двигаться быстрее света в вакууме. 299 792 458 метров в секунду. Если это массивная частица, она может лишь приблизиться к этой скорости, но не достичь её; если это безмассовая частица, она всегда должна двигаться именно с этой скоростью, если дело происходит в пустом пространстве. Но откуда нам это известно и что тому причиной? На этой неделе наш читатель задаёт нам три связанных со скоростью света вопроса:
Почему скорость света конечна? Почему она именно такая, какая есть? Почему не быстрее и не медленнее?
Вплоть до XIX века у нас даже не было подтверждений этим данным.
Иллюстрация света, проходящего через призму и разделяющегося на чёткие цвета.
Если свет проходит через воду, призму или любую другую среду, он разделяется на разные цвета. Красный цвет преломляется не под тем углом, под которым это делает синий, из-за чего и возникает что-то типа радуги. Это можно наблюдать и вне видимого спектра; инфракрасный и ультрафиолетовый свет ведут себя так же. Это было бы возможно, только если скорость света в среде отличается для света разных длин волн/энергий. Но в вакууме, вне всякой среды, всякий свет перемещается с одной и той же конечной скоростью.
Разделение света на цвета происходит из-за разных скоростей движения света, зависящих от длины волны, через среду
До этого додумались только в середине XIX века, когда физик Джеймс Клерк Максвелл показал, что на самом деле представляет собой свет: электромагнитную волну. Максвелл впервые поставил независимые явления электростатики (статичные заряды), электродинамики (движущиеся заряды и токи), магнитостатики (постоянные магнитные поля) и магнитодинамики (наведённые токи и переменные магнитные поля) на единую, объединённую платформу. Управляющие ею уравнения – уравнения Максвелла – позволяют вычислять ответ на простой вроде бы вопрос: какие типы электрических и магнитных полей могут существовать в пустом пространстве вне электрических или магнитных источников? Без зарядов и без токов можно было бы решить, что никакие – но уравнения Максвелла удивительным образом доказывают обратное.
Табличка с уравнениями Максвелла с обратной стороны его памятника
Ничто – одно из возможных решений; но возможно и другое – колеблющиеся в одной фазе взаимно перпендикулярные электрическое и магнитное поля. У них есть определённые амплитуды. Их энергия определяется частотой колебаний полей. Они передвигаются с определённой скоростью, определяемой двумя константами: ε0 и µ0. Эти константы определяют величину электрического и магнитного взаимодействий в нашей Вселенной. Получаемое уравнение описывает волну. И, как у всякой волны, у неё есть скорость, 1/√ε0 µ0, которая оказывается равной c, скорости света в вакууме.
Колеблющиеся в одной фазе взаимно перпендикулярные электрическое и магнитное поля, распространяющиеся со скоростью света, определяют электромагнитное излучение
С теоретической точки зрения, свет – безмассовое электромагнитное излучение. По законам электромагнетизма он обязан двигаться со скоростью 1/√ε0 µ0, равной c – вне зависимости от остальных его свойств (энергии, импульса, длины волны). ε0 можно измерить, сделав и измерив конденсатор; µ0 точно определяется из ампера, единицы электрического тока, что и даёт нам c. Та же фундаментальная константа, впервые выведенная Максвеллом в 1865 году, с тех пор появлялась во многих других местах:
• Это скорость любой безмассовой частицы или волны, включая гравитационные.
• Это фундаментальная константа, соотносящая ваше движение в пространстве с вашим движением во времени в теории относительности.
• И это фундаментальная константа, связывающая энергию с массой покоя, E = mc 2
Наблюдения Рёмера снабдили нас первыми измерениями скорости света, полученными при помощи геометрии и измерения времени, необходимого на то, чтобы свет прошёл расстояние, равное диаметру орбиты Земли.
Первые измерения этой величины были сделаны во время астрономических наблюдений. Когда луны Юпитера входят и выходят в положение затмения, они кажутся видимыми или невидимыми с Земли в определённой последовательности, зависящей от скорости света. Это привело к первому количественному измерению с в XVII веке, которое определили в 2,2 × 10 8 м/с. Отклонение звёздного света – из-за движения звезды и Земли, на которой установлен телескоп – тоже можно оценить численно. В 1729 году этот метод измерения с показал значение, отличающееся от современного всего на 1,4%. К 1970-м с определили равным 299 792 458 м/с с погрешностью всего в 0,0000002%, большая часть которой проистекала из невозможности точного определения метра или секунды. К 1983 году секунду и метр переопределили через с и универсальные свойства излучения атома. Теперь скорость света равна точно 299 792 458 м/с.
Атомный переход с орбитали 6S, δf1, определяет метр, секунду и скорость света
Так почему же скорость света не больше и не меньше? Объяснение такое же простое, как указанный на рис. Выше атом. Атомные переходы происходят так, как происходят, из-за фундаментальных квантовых свойств строительных блоков природы. Взаимодействия атомного ядра с электрическим и магнитными полями, создаваемыми электронами и другими частями атома приводят к тому, что разные энергетические уровни оказываются чрезвычайно близко друг к другу, но всё же немного отличаются: это называется сверхтонким расщеплением. В частности, частота перехода сверхтонкой структуры цезия-133 испускает свет совершенно определённой частоты. Время, за которое проходит 9 192 631 770 таких циклов, определяет секунду; расстояние, которое свет проходит за это время, равняется 299 792 458 метрам; скорость, с которой распространяется этот свет, определяет с.
Пурпурный фотон переносит в миллион раз больше энергии, чем жёлтый. Космический гамма-телескоп Ферми не показывает никаких задержек какого-либо из фотонов, пришедших к нам от гамма-всплеска, что подтверждает постоянство скорости света для всяких энергий
Чтобы поменять это определение, нужно, чтобы с этим атомным переходом или с идущим от него светом произошло что-то фундаментально отличное от его текущей природы. Этот пример также даёт нам ценный урок: если бы атомная физика и атомные переходы работали бы в прошлом или на дальних расстояниях по-другому, это было бы свидетельством изменения скорости света со временем. Пока что все проводимые нами измерения лишь накладывают дополнительные ограничения на постоянство скорости света, и эти ограничения весьма строги: изменение не превосходит 7% от текущего значения за последние 13,7 млрд лет. Если бы по какой-то из этих метрик скорость света оказалась не постоянной, или же она отличалась бы у разных типов света, это привело бы к крупнейшей научной революции со времён Эйнштейна. Вместо этого все свидетельства говорят в пользу Вселенной, в которой все законы физики всегда, везде, во всех направлениях, во все времена остаются одинаковыми, включая и физику самого света. В каком-то смысле это тоже достаточно революционные сведения.
Итан Сигель – астрофизик, популяризатор науки, автор блога Starts With A Bang! Написал книги «За пределами галактики» [Beyond The Galaxy], и «Трекнология: наука Звёздного пути» [Treknology].
Источник
Как измеряли скорость света?
Действительно, как? Как измерить самую высокую скорость во Вселенной в наших скромных, Земных условиях? Нам уже не нужно ломать над этим голову – ведь за несколько веков столько людей трудилось над этим вопросом, разрабатывая методы измерения скорости света. Начнем рассказ по порядку.
Скорость света – скорость распространения электромагнитных волн в вакууме. Она обозначается латинской буквой c. Скорость света равняется приблизительно 300 000 000 м/с.
Сначала над вопросом измерения скорости света вообще никто не задумывался. Есть свет – вот и отлично. Затем, в эпоху античности, среди ученых философов господствовало мнение о том, что скорость света бесконечна, то есть мгновенна. Потом было Средневековье с инквизицией, когда главным вопросом мыслящих и прогрессивных людей был вопрос «Как бы не попасть в костер?» И только в эпохи Возрождения и Просвещения мнения ученых расплодились и, конечно же, разделились.
8 минут — время, за которое свет проходит расстояние от Солнца до Земли
Так, Декарт, Кеплер и Ферма были того же мнения, что и ученые античности. А вот Галилео Галилей считал, что скорость света конечна, хоть и очень велика. Собственно, он и произвел первое измерение скорости света. Точнее, предпринял первую попытку по ее измерению.
Опыт Галилея
Опыт Галилео Галилея был гениален в своей простоте. Ученый проводил эксперимент по измерению скорости света, вооружившись простыми подручными средствами. На большом и известном расстоянии друг от друга, на разных холмах, Галилей и его помощник стояли с зажженными фонарями. Один из них открывал заслонку на фонаре, а второй должен был проделать то же самое, когда увидит свет первого фонаря. Зная расстояние и время (задержку перед тем, как помощник откроет фонарь) Галилей рассчитывал вычислить скорость света. К сожалению, для того, чтобы этот эксперимент увенчался успехом, Галилею и его помощнику нужно было выбрать холмы, которые находятся на расстоянии в несколько миллионов километров друг от друга. Хотелось бы напомнить, что вы можете заказать эссе, оформив заявку на сайте.
Галилео Галилей
Опыты Рёмера и Брэдли
Первым удачным и на удивление точным опытом по определению скорости света был опыт датского астронома Олафа Рёмера. Рёмер применил астрономический метод измерения скорости света. В 1676 он наблюдал в телескоп за спутником Юпитера Ио, и обнаружил, что время наступления затмения спутника меняется по мере отдаления Земли от Юпитера. Максимальное время запаздывания составило 22 минуты. Посчитав, что Земля удаляется от Юпитера на расстояние диаметра земной орбиты, Рёмер разделил примерное значение диаметра на время запаздывания, и получил значение 214000 километров в секунду. Конечно, такой подсчет был очень груб, расстояния между планетами были известны лишь примерно, но результат оказался относительно недалек от истины.
К измерению скорости света Рёмером
Опыт Брэдли. В 1728 году Джеймс Брэдли оценил скорость света наблюдая абберацию звезд. Абберация – это изменение видимого положения звезды, вызванное движением земли по орбите. Зная скорость движения Земли и измерив угол абберации, Брэдли получил значение в 301000 километров в секунду.
Опыт Физо
К результату опыта Рёмера и Брэдли тогдашний ученый мир отнесся с недоверием. Тем не менее, результат Брэдли был самым точным на протяжении сотни с лишним лет, аж до 1849 года. В тот год французский ученый Арман Физо измерил скорость света методом вращающегося затвора, без наблюдений за небесными телами, а здесь, на Земле. По сути, это был первый после Галилея лабораторный метод измерения скорости света. Приведем ниже схему его лабораторной установки.
Установка Физо
Свет, отражаясь от зеркала, проходил через зубья колеса и отражался от еще одного зеркала, удаленного на 8,6 километров. Скорость колеса увеличивали до того момента, пока свет не становился виден в следующем зазоре. Расчеты Физо дали результат в 313000 километров в секунду. Спустя год подобный эксперимент с вращающимся зеркалом быо проведен Леоном Фуко, получившим результат 298000 километров в секунду.
С появлением мазеров и лазеров у людей появились новые возможности и способы для измерение скорости света, а развитие теории позволило также рассчитывать скорость света косвенно, без проведения прямых измерений.
Арман Ипполит Луи Физо
Самое точное значение скорости света
Человечество накопило огромный опыт по измерению скорости света. На сегодняшний день самым точным значением скорости света принято считать значение 299 792 458 метров в секунду, полученное в 1983 году. Интересно, что дальнейшее, более точное измерение скорости света, оказалось невозможным из-за погрешностей в измерении метра. Сейчас значение метра привязано к скорости света и равняется расстоянию, которое свет проходит за 1 / 299 792 458 секунды.
Напоследок, как всегда, предлагаем посмотреть познавательное видео. Друзья, даже если перед Вами стоит такая задача, как самостоятельное измерение скорости света подручными средствами, Вы можете смело обратиться за помощью к нашим авторам. Заказать контрольную работу онлайн вы можете оформив заявку на сайте Заочника. Желаем Вам приятной и легкой учебы!
Источник