- Python 3: Генерация случайных чисел (модуль random)¶
- random.random¶
- random.seed¶
- random.uniform¶
- random.randint¶
- random.choince¶
- random.randrange¶
- random.shuffle¶
- Вероятностные распределения¶
- Примеры¶
- Генерация произвольного пароля¶
- Random Python
- Как использовать модуль random в Python
- Python функции модуля random
- Случайное целое число — randint() функция random
- Генерация случайного целого числа — randrange()
- Выбор случайного элемента из списка choice()
- Функция sample()
- Случайные элементы из списка — choices()
- Генератор псевдослучайных чисел — seed()
- Перемешивание данных — shuffle()
- Генерации числа с плавающей запятой — uniform()
- Функция triangular()
- Криптографическая зашита генератора случайных данных
- Numpy.random — Генератор псевдослучайных чисел
- Генерация случайного n-мерного массива вещественных чисел
- Генерация случайного n-мерного массива целых чисел
- Выбор случайного элемента из массива чисел или последовательности
- Генерация случайных универсальных уникальных ID
- Рандом (random) в Python — как генерировать случайные числа
- Как работают случайные числа
- Модуль random
- Случайные целые числа (int)
- Случайные вещественные числа (float)
- Случайные элементы из последовательности
- Управление генератором
- Вероятностное распределение
- Best practices
- Пример #1 — случайная задержка (random sleep)
- Пример #2 — выбор случайного элемента из списка (с учетом веса)
- Пример #3 — случайный пароль
Python 3: Генерация случайных чисел (модуль random)¶
«Генерация случайных чисел слишком важна, чтобы оставлять её на волю случая»
Python порождает случайные числа на основе формулы, так что они не на самом деле случайные, а, как говорят, псевдослучайные [1]. Этот способ удобен для большинства приложений (кроме онлайновых казино) [2].
[1] | Википедия: Генератор псевдослучайных чисел |
[2] | Доусон М. Программируем на Python. — СПб.: Питер, 2014. — 416 с.: ил. — 3-е изд |
Модуль random позволяет генерировать случайные числа. Прежде чем использовать модуль, необходимо подключить его с помощью инструкции:
random.random¶
random.random() — возвращает псевдослучайное число от 0.0 до 1.0
random.seed¶
random.seed( ) — настраивает генератор случайных чисел на новую последовательность. По умолчанию используется системное время. Если значение параметра будет одиноким, то генерируется одинокое число:
random.uniform¶
random.uniform( , ) — возвращает псевдослучайное вещественное число в диапазоне от до :
random.randint¶
random.randint( , ) — возвращает псевдослучайное целое число в диапазоне от до :
random.choince¶
random.choince( ) — возвращает случайный элемент из любой последовательности (строки, списка, кортежа):
random.randrange¶
random.randrange( , , ) — возвращает случайно выбранное число из последовательности.
random.shuffle¶
random.shuffle( ) — перемешивает последовательность (изменяется сама последовательность). Поэтому функция не работает для неизменяемых объектов.
Вероятностные распределения¶
random.triangular(low, high, mode) — случайное число с плавающей точкой, low ≤ N ≤ high . Mode — распределение.
random.betavariate(alpha, beta) — бета-распределение. alpha>0 , beta>0 . Возвращает от 0 до 1.
random.expovariate(lambd) — экспоненциальное распределение. lambd равен 1/среднее желаемое. Lambd должен быть отличным от нуля. Возвращаемые значения от 0 до плюс бесконечности, если lambd положительно, и от минус бесконечности до 0, если lambd отрицательный.
random.gammavariate(alpha, beta) — гамма-распределение. Условия на параметры alpha>0 и beta>0 .
random.gauss(значение, стандартное отклонение) — распределение Гаусса.
random.lognormvariate(mu, sigma) — логарифм нормального распределения. Если взять натуральный логарифм этого распределения, то вы получите нормальное распределение со средним mu и стандартным отклонением sigma . mu может иметь любое значение, и sigma должна быть больше нуля.
random.normalvariate(mu, sigma) — нормальное распределение. mu — среднее значение, sigma — стандартное отклонение.
random.vonmisesvariate(mu, kappa) — mu — средний угол, выраженный в радианах от 0 до 2π, и kappa — параметр концентрации, который должен быть больше или равен нулю. Если каппа равна нулю, это распределение сводится к случайному углу в диапазоне от 0 до 2π.
random.paretovariate(alpha) — распределение Парето.
random.weibullvariate(alpha, beta) — распределение Вейбулла.
Примеры¶
Генерация произвольного пароля¶
Хороший пароль должен быть произвольным и состоять минимум из 6 символов, в нём должны быть цифры, строчные и прописные буквы. Приготовить такой пароль можно по следующему рецепту:
Этот же скрипт можно записать всего в две строки:
Данная команда является краткой записью цикла for, вместо неё можно было написать так:
Данный цикл повторяется 12 раз и на каждом круге добавляет к строке psw произвольно выбранный элемент из списка.
Источник
Random Python
Каждый человек ежедневно сталкивается со случайностью. Википедия нам говорит: случайность — это результат маловероятного или непредсказуемого события. Непредсказуемого. Стоит отметить, что, чем сложнее система, тем ниже возможность прогнозировать (предсказывать) её будущие состояния. Мир сложен и именно по-этому случайность встречается столь часто. Можно сказать, что случайностью мы называем все события, которые не можем предугадать. Таким образом, разговор о случайном – это разговор о нехватке информации. Но эту нехватку человек научился использовать себе на пользу. К примеру, случайные величина широко применяются в криптографии.
В языке Python есть удобные инструменты для работы со случайными значениями. Речь о модуле стандартной библиотеки под названием random (и не только о нём). Давайте знакомиться!
Как использовать модуль random в Python
Для начала модуль надо импортировать.
Python функции модуля random
Случайное целое число — randint() функция random
Самое частое применение данного модуля — генерация случайных чисел. Самая популярная функция для этого — randint().
Она возвращает случайное целое число, лежащее в диапазоне, указанном в параметрах функции. Оба аргумента обязательны и должны быть целыми числами.
Генерация случайного целого числа — randrange()
Функция randrange() используется для генерации случайного целого числа в пределах заданного диапазона. Отличие от randint() заключается в том, что здесь есть третий параметр – шаг, по умолчанию равный единице.
Выбор случайного элемента из списка choice()
Вы играли в детстве в «считалочки»? Эники-беники… Вот этим и занимается random.choice(): функция возвращает один случайный элемент последовательности.
Функция sample()
random.sample() применяется, когда надо выбрать несколько элементов из заданной коллекции. Она возвращает список уникальных элементов, выбранных из исходной последовательности. Количество элементов, которое вернёт функция, задаётся аргументом k.
Случайные элементы из списка — choices()
random.choices делает то же, что и random.sample(), но элементы, которые она возвращает, могут быть не уникальными.
Генератор псевдослучайных чисел — seed()
Метод seed() используется для инициализации генератора псевдослучайных чисел в Python. Вот что это означает: для генерации псевдослучайных чисел необходимо какое-то исходное число и именно это число можно установить данным методом. Если значение seed не установлено, тогда система будет отталкиваться от текущего времени.
Перемешивание данных — shuffle()
Метод random.shuffle() применяется для расстановки элементов последовательности в случайном порядке. Представьте коробку в которой лежат какие-то предметы. Встряхните её 🙂
Генерации числа с плавающей запятой — uniform()
random.uniform() похожа на randint(), но применяется для генерации числа с плавающей запятой в указанном диапазоне.
Функция triangular()
Функция random.triangular() позволяет управлять вероятностью – она возвращает случайное число с плавающей запятой, которое соответствует заданному диапазону, а также уточняющему значению mode. Этот параметр дает возможность взвешивать возможный результат ближе к одному из двух других значений параметров. По умолчанию он находится посередине диапазона.
Криптографическая зашита генератора случайных данных
Случайные числа, полученные при помощи модуля random в Питоне, не являются криптографически устойчивыми. Это означает, что криптоанализ позволяет предсказать какое число будет сгенерировано следующим. Попробуем исправить ситуацию.
Модуль secrets используется для генерации криптографически сильных случайных чисел, пригодных для управления данными , такими как пароли, аутентификации учетной записи, маркеры безопасности и так далее.
Его зачастую следует использовать вместо генератора псевдослучайных чисел по умолчанию в модуле random, который предназначен для моделирования и симуляции, а не безопасности или криптографии.
Numpy.random — Генератор псевдослучайных чисел
Самый простой способ задать массив со случайными элементами — использовать функцию sample (или random, или random_sample, или ranf — это всё одна и та же функция).
Без аргументов возвращает просто число в промежутке [0, 1), с одним целым числом — одномерный массив, с кортежем — массив с размерами, указанными в кортеже (все числа — из промежутка [0, 1)).
Генерация случайного n-мерного массива вещественных чисел
numpy.random.rand()применяется для генерации массива случайных вещественных чисел в пределах заданного диапазона.
Также можно генерировать числа согласно различным распределениям (Гаусса, Парето и другие). Чаще всего нужно равномерное распределение, которое можно получить с помощь функции uniform.
Для начала необходимо установить Numpy.
Генерация случайного n-мерного массива целых чисел
С помощью функции randint или random_integers можно создать массив из целых чисел. Аргументы: low, high, size: от какого, до какого числа (randint не включает в себя это число, а random_integers включает), и size — размеры массива.
Выбор случайного элемента из массива чисел или последовательности
Функция NumPy random.choice() используется для получения случайных выборок одномерного массива, который возвращается как случайные выборки массива NumPy. Эта функция генерирует случайные выборки, которые обычно используются в статистике данных, анализе данных, полях, связанных с данными, а также может использоваться в машинном обучении, байесовской статистике и т. д.
Генерация случайных универсальных уникальных ID
Универсальные уникальные идентификаторы, также известные как UUID, — это 128-битные числа, используемые для однозначной идентификации информации в компьютерных системах. UUID могут использоваться для обозначения широкого спектра элементов, включая документы, объекты, сеансы, токены, сущности и т. Д. Их также можно использовать в качестве ключей базы данных.
Эта библиотека генерирует уникальные идентификаторы на основе системного времени и сетевого адреса компьютера. Объект UUID неизменяем и содержит некоторые функции для создания различных уникальных идентификаторов.
UUID состоит из пяти компонентов, каждый из которых имеет фиксированную длину. Символ дефиса разделяет каждый компонент. Мы можем представить UUID в формате «8-4-4-4-12», где каждая из цифр представляет длину в шестнадцатеричном формате.
UUID Python, сгенерированный с помощью функции uuid4(), создается с использованием истинно случайного или псевдослучайного генератора. Поэтому вероятность повторения двух гуидов невелика. Когда UUID необходимо сгенерировать на отдельных машинах или мы хотим сгенерировать безопасные UUID, используйте UUID4 (). Он также используется для генерации криптографически безопасных случайных чисел.
Источник
Рандом (random) в Python — как генерировать случайные числа
С лучайные числа применяются в программировании в разных случаях, например, для моделирования процессов и в видеоиграх. Для начала разберёмся, какую последовательность можно назвать случайной.
Случайной последовательностью называют набор элементов, полученных таким образом, что любой элемент их этого набора никак не связан ни с каким другим элементом. При этом в программировании обычно последовательность не является строго случайной — в ней для генерации следующего элемента используется предыдущий.
Как работают случайные числа
Полностью случайные числа генерируются истинным генератором случайных чисел (TRNG). Их можно получить, например, бросанием кубика или доставанием шаров из урны. Так как подобных устройств нет в компьютере, то в нем можно получить только «псевдослучайные» числа.
В Python, как и во всех остальных языках программирования, используется генератор псевдослучайных чисел, который выдает как будто случайные, но воспроизводимые числа.
Чтобы понять, как работают генераторы псевдослучайных чисел, рассмотрим работу одного из первых подобных генераторов. Его алгоритм работы был разработан Нейманом. В нем первое число возводят в квадрат, а потом из полученного результата берут средние цифры. Например, первое число 281, возводим его в квадрат, получаем 78961 и берем три цифры, находящиеся в середине – 896. После этого для генерации следующего числа используем 896.
Модуль random
В модуле random реализованы различные генераторы псевдослучайных чисел. Здесь присутствуют методы, с помощью которых можно получить равномерное, Гауссовское, бета и гамма распределения и другие функции. Практически все они зависят от метода random() . В Python, в качестве основного, используется генератор псевдослучайных чисел Mersenne Twister , который выдает 53-х битные вещественные числа.
👉 Как использовать: чтобы начать использовать встроенные генераторы случайных чисел, нужно сначала подключить модуль рандом:
После этого можно вызывать методы модуля random :
В модуле random существуют методы для генерации целых чисел, с плавающей точкой, для работы с последовательностями. Кроме этого существуют функции для управления генератором и генерации различных последовательностей. Рассмотрим основные из этих методов.
Случайные целые числа (int)
Перечислим основные функции, которые есть в модуле random для выдачи случайных целых чисел.
randint Функция randint(a, b) получает на вход два целых числа и возвращает случайное значение из диапазона [a, b] (a и b входят в этот диапазон).
import random random_number = random.randint(0, 125) print(random_number) > 113
randrange В функцию randrange(start, stop[, step]) передают три целых числа:
- start – начало диапазона (входит в последовательность);
- stop – конец диапазона (в последовательность не входит);
- step – шаг генерации (если на его месте написать 0, получим ошибку «ValueError»).
На выходе функция выдает случайное число в заданном диапазоне.
import random random_number = random.randrange(1, 100, 2) print(random_number) > 43
Случайные вещественные числа (float)
Перечислим функции, которые выдают вещественные числа.
random Функция random() выдает вещественные числа, в диапазоне [0.0, 1.0) (включая 0.0, но не включая 1.0).
uniform Сгенерировать число с плавающей точкой можно с помощью функции uniform(a, b) . При этом полученное число будет в диапазоне [a, b) или [a, b] (a входит в диапазон, а вхождение b зависит от округления).
import random random_number = random.uniform(7.3, 10.5) print(random_number) > 10.320165816501492
Случайные элементы из последовательности
В модуле random языка Python есть несколько функций, которые можно применять для работы с последовательностями.
choice С помощью функции choice(seq) можно выбрать один элемент из набора данных. В качестве единственного аргумента в функцию передаётся последовательность. Если последовательность будет пустой (то есть в ней не будет ни одного элемента), получим ошибку «IndexError».
import random seq = [10, 11, 12, 13, 14, 15] random_element = random.choice(seq) print(random_element) > 12
choices С помощью функции choices(seq [, weights, cum_weights, k]) можно выбрать 1 или несколько элементов из набора данных. weights , cum_weights и k — необязательные параметры.
- weights — список относительных весов;
- cum_weights — список кумулятивных (совокупных) весов, например weights [10, 5, 30, 5] эквивалентен cum_weights [10, 15, 45, 50].
- k — длина возвращаемого списка (она может быть больше длины переданной последовательности и элементы могут дублироваться).
import random seq = [1, 2, 3, 4, 5, 6] random_elements = random.choices(seq, weights=[20, 1.1, 1, 2.1, 10, 1], k=4) print(random_elements) > [5, 1, 1, 5]
shuffle Перемешать элементы набора данных можно с помощью функции shuffle(x[, random]) .
- х — последовательность;
- random (необязательный параметр) — задает метод вероятностных распределений. Этот параметр не рекомендуется использовать в версии Python 3.9, а в версии 3.11 его поддержка будет прекращена.
shuffle перемешивает переданную последовательность, и возвращает None .
import random seq = [«Cappuccino», «Latte», «Espresso», «Americano»] random.shuffle(seq) print(seq) > [‘Espresso’, ‘Americano’, ‘Latte’, ‘Cappuccino’]
sample Чтобы выбрать какое-то количество элементов из набора данных можно воспользоваться функцией sample(х, k) .
- х — последовательность;
- k — количество элементов новой подпоследовательности.
На выходе получаем k уникальных случайных элементов из последовательности.
Если в исходной последовательности есть неуникальные (повторяющиеся) элементы, то каждый их них может появиться в новом списке.
Управление генератором
Генерация чисел в Python не совсем случайна и зависит от состояния генератора случайных чисел. Рассмотрим функции, с помощью которых можно управлять состоянием этого генератора.
getstate Метод getstate() модуля random возвращает объект, в котором записано текущим состояние генератора случайных чисел. Его можно использовать для восстановления состояния генератора. Эта функция не имеет параметров.
import random print(random.getstate()) > (3, (2147483648, 3570748448, 2839542888, 4273933825, 4291584237, .
setstate Метод setstate(state) применяется для восстановления состояния генератора случайных чисел. Обычно его используют совместно с методом getstate() . В качестве параметра в функцию передается объект состояния генератора, полученный, например, с помощью функции getstate() .
import random state = random.getstate() # сохраняем текущее состояние генератора random_number_1 = random.random() # получаем случайное число print(random_number_1) # > 0.42164837822065193 # первое случайное число random_number_2 = random.random() print(random_number_2) # > 0.2486825504535808 # второе случайное число random.setstate(state) # восстанавливаем состояние генератора random_number_3 = random.random() # снова генерируем число print(random_number_3) # > 0.42164837822065193 # новое число равное первому, сгенерированному с тем же состояние генератора
seed Генератору случайных чисел нужно число, основываясь на котором он сможет начать генерировать случайные значения.
Задать начальное значение можно с помощью метода seed(a=None, version=2) .
- а — начальное число, с которого начинается генерация. Этот параметр не обязательный. Если он не задан, используется текущее системное время (или доступный механизм генерации, предоставляемый ОС);
- version — стратегия интерпретации первого аргумента. По умолчанию используется версия 2, при которой str, bytes и bytearray преобразуются в int. Версия 1 (используется для совместимости со старыми версиями Python) и в ней для str и bytes генерирует более узкий диапазон начальных значений.
Вероятностное распределение
В теории вероятностей важную роль играет понятие распределение вероятностей. Оно показывает с какой вероятность может наступить каждое из возможных событий. С его помощью можно моделировать как наступление дискретных событий (например, бросание монеты, количество телефонных разговоров за неделю, количество пассажиров в автобусе), так и непрерывных (например, длительность разговора, количество осадков за год, расход электричества за месяц).
Для наглядности рассмотрим самое распространенное нормальное распределение вероятностей. На рисунке ниже приведена кривая нормального распределения.
В модуле random существуют функции, которые позволяют использовать различные методы вероятностных распределений:
- triangular(a, b, mode) — генерирует случайное вещественное число, находящееся в диапазоне от a до b. По умолчанию эти параметры равны: а = 0, b = 1. Третий параметр mode задает среднюю точку вероятности распределения. (подробнее про треугольное распределение тут ).
- betavariate(alpha, beta) — генерирует случайные числа соответствующие параметрам бета-распределения. Возвращаемые значения лежат в диапазоне от 0 до 1.
- expovariate(lambd) — можно получить случайные значения, соответствующие экспоненциальному распределению. Если lambd положительное, то на выходе будут значения от 0 до +∞, а если отрицательное, то от -∞ до 0.
- gammavariate(alpha, beta) — на выходе получаются случайные числа, соответствующие гамма распределению. Параметры alpha и beta, передаваемые в функцию должны быть больше 0.
- gauss(mu, sigma) — на выходе получаются случайные числа, которые соответствуют Гауссовому распределению. В этот метод передаются два параметра: mu — среднее значение и sigma — среднеквадратичное отклонение.
- lognormvariate(mu, sigma) — генерирует случайные значения соответствующие логарифму нормального распределения. То есть если вычислить натуральный логарифм полученного распределения, то в результате получится нормальное распределение с параметрами mu (среднее) и sigma (среднеквадратичное отклонение).
- normalvariate(mu, sigma) — предназначен для генерации случайных значений подчиняющихся закону нормального распределения. В качестве параметров передаются: mu — среднее распределения и sigma — стандартное отклонение.
- vonmisesvariate(mu, kappa) — используется для возврата случайного числа с плавающей запятой с распределением фон Мизеса (или круговым нормальным распределением).
- paretovariate(alpha) — выдает случайные числа, соответствующие распределению Парето. Параметр alpha задает форму.
- weibullvariate(alpha, beta) — Значения, выдаваемые weibullvariate соответствуют распределению Вейбулла. Параметр alpha задает масштаб, а beta форму.
💭 Ознакомиться со всеми функциями модуля random можно на официальном сайте Python в разделе документация .
Best practices
Приведем несколько примеров использования случайных чисел.
Пример #1 — случайная задержка (random sleep)
Иногда необходимо сделать так, чтобы программа работала с задержками. Например, это актуально при парсинге сайта (при частых запросах некоторые сайты могут вас банить).
import random import time page_list = [«site.ru/page1», «site.ru/page2», «site.ru/page3»] for page in page_list: # # some actions # time.sleep(random.randint(1, 3)) # задержка от 1 до 3 секунд
💭 Для имитации действий человека можно использовать random.uniform(1, 3) — это добавит случайные миллисекунды к вашим задержкам.
Пример #2 — выбор случайного элемента из списка (с учетом веса)
Дано: веб-сайт. В базе данных 4 баннера, к каждому баннеру указан вес (приоритет к показу).
Необходимо рандомно показывать на сайте 1 баннер, в зависимости от его веса.
Пример #3 — случайный пароль
С помощью генератора случайных чисел можно создавать пароли. Например, сгенерировать стойкий пароль можно так:
import random import string pwd_length = 0 while pwd_length Укажите длину пароля (от 12 символов): 12 > JFyc;6-ICxuQ
В данном примере будет сгенерирован пароль, содержащий минимум 12 символов, среди которых точно будет маленькая буква, большая буква, цифра и символ.
Методы модуля random позволяют получить случайные данные с использованием Mersenne Twister. Однако имейте в виду, что данный способ не является криптографически безопасным (для генерирования паролей есть более надежные варианты).
Кроме модуля random , в Python существуют альтернативные модули, позволяющие получить случайное значения:
Источник