Как вывести весь массив python numpy

Содержание
  1. Матрицы в Python и массивы NumPy
  2. Матрицы в Python
  3. NumPy массивы в Python
  4. Как создать массив NumPy?
  5. Массив целых чисел, чисел с плавающей точкой и составных чисел
  6. Массив нулей и единиц
  7. Использование arange() и shape()
  8. Операции с матрицами
  9. Сложение двух матриц или сумма элементов массива Python
  10. Умножение двух матриц Python
  11. Транспонирование матрицы питон
  12. Доступ к элементам матрицы, строкам и столбца
  13. Доступ к элементам матрицы
  14. Доступ к строкам матрицы
  15. Доступ к столбцам матрицы
  16. Разделение матрицы
  17. NumPy в Python. Часть 1
  18. Предисловие переводчика
  19. Введение
  20. Установка
  21. Немного дополнительной информации
  22. Массивы
  23. NumPy, часть 1: начало работы
  24. Установка NumPy
  25. Начинаем работу
  26. Создание массивов
  27. Печать массивов
  28. NumPy, часть 2: базовые операции над массивами
  29. Базовые операции
  30. Индексы, срезы, итерации
  31. Манипуляции с формой
  32. Объединение массивов
  33. Разбиение массива
  34. Копии и представления
  35. Вообще никаких копий
  36. Представление или поверхностная копия
  37. Глубокая копия

Матрицы в Python и массивы NumPy

Матрица — это двухмерная структура данных, в которой числа расположены в виде строк и столбцов. Например:

Эта матрица является матрицей три на четыре, потому что она состоит из 3 строк и 4 столбцов.

Матрицы в Python

Python не имеет встроенного типа данных для матриц. Но можно рассматривать список как матрицу. Например:

Этот список является матрицей на 2 строки и 3 столбца.

Обязательно ознакомьтесь с документацией по спискам Python , прежде чем продолжить читать эту статью.

Давайте посмотрим, как работать с вложенным списком.

Когда мы запустим эту программу, результат будет следующий:

Использование вложенных списков в качестве матрицы подходит для простых вычислительных задач. Но в Python есть более эффективный способ работы с матрицами – NumPy .

NumPy массивы в Python

NumPy — это расширение для научных вычислений, которое поддерживает мощный объект N-мерного массива. Прежде чем использовать NumPy, необходимо установить его. Для получения дополнительной информации,

  • Ознакомьтесь: Как установить NumPy Python?
  • Если вы работаете в Windows, скачайте и установите дистрибутив anaconda Python. Он поставляется вместе с NumPy и другими расширениями.

После установки NumPy можно импортировать и использовать его.

NumPy предоставляет собой многомерный массив чисел (который на самом деле является объектом). Давайте рассмотрим приведенный ниже пример:

Как видите, класс массива NumPy называется ndarray.

Как создать массив NumPy?

Существует несколько способов создания массивов NumPy.

Массив целых чисел, чисел с плавающей точкой и составных чисел

Когда вы запустите эту программу, результат будет следующий:

Массив нулей и единиц

Здесь мы указали dtype — 32 бита (4 байта). Следовательно, этот массив может принимать значения от -2 -31 до 2 -31 -1.

Использование arange() и shape()

Узнайте больше о других способах создания массива NumPy .

Операции с матрицами

Выше мы привели пример сложение, умножение матриц и транспонирование матрицы. Мы использовали вложенные списки, прежде чем создавать эти программы. Рассмотрим, как выполнить ту же задачу, используя массив NumPy.

Сложение двух матриц или сумма элементов массива Python

Мы используем оператор +, чтобы сложить соответствующие элементы двух матриц NumPy.

Умножение двух матриц Python

Чтобы умножить две матрицы, мы используем метод dot(). Узнайте больше о том, как работает numpy.dot .

Примечание: * используется для умножения массива (умножения соответствующих элементов двух массивов), а не умножения матрицы.

Транспонирование матрицы питон

Мы используем numpy.transpose для вычисления транспонирования матрицы.

Как видите, NumPy значительно упростил нашу задачу.

Доступ к элементам матрицы, строкам и столбца

Доступ к элементам матрицы

Также можно получить доступ к элементам матрицы, используя индекс. Начнем с одномерного массива NumPy.

Когда вы запустите эту программу, результат будет следующий:

Теперь выясним, как получить доступ к элементам двухмерного массива (который в основном представляет собой матрицу).

Когда мы запустим эту программу, результат будет следующий:

Доступ к строкам матрицы

Когда мы запустим эту программу, результат будет следующий:

Доступ к столбцам матрицы

Когда мы запустим эту программу, результат будет следующий:

Если вы не знаете, как работает приведенный выше код, прочтите раздел «Разделение матрицы».

Разделение матрицы

Разделение одномерного массива NumPy аналогично разделению списка. Рассмотрим пример:

Теперь посмотрим, как разделить матрицу.

Использование NumPy вместо вложенных списков значительно упрощает работу с матрицами. Мы рекомендуем детально изучить пакет NumPy, если вы планируете использовать Python для анализа данных.

Пожалуйста, оставьте ваши комментарии по текущей теме статьи. Мы очень благодарим вас за ваши комментарии, лайки, отклики, подписки, дизлайки!

Источник

NumPy в Python. Часть 1

Предисловие переводчика


Доброго времени суток, Хабр. Запускаю цикл статей, которые являются переводом небольшого мана по numpy, ссылочка. Приятного чтения.

Введение

Установка

Если у вас есть Python(x, y) (Примечание переводчика: Python(x, y), это дистрибутив свободного научного и инженерного программного обеспечения для численных расчётов, анализа и визуализации данных на основе языка программирования Python и большого числа модулей (библиотек)) на платформе Windows, то вы готовы начинать. Если же нет, то после установки python, вам нужно установить пакеты самостоятельно, сначала NumPy потом SciPy. Установка доступна здесь. Следуйте установке на странице, там всё предельно понятно.

Немного дополнительной информации

Сообщество NumPy и SciPy поддерживает онлайн руководство, включающие гайды и туториалы, тут: docs.scipy.org/doc.

Импорт модуля numpy

Есть несколько путей импорта. Стандартный метод это — использовать простое выражение:

Тем не менее, для большого количества вызовов функций numpy, становится утомительно писать numpy.X снова и снова. Вместо этого намного легче сделать это так:

Это выражение позволяет нам получать доступ к numpy объектам используя np.X вместо numpy.X. Также можно импортировать numpy прямо в используемое пространство имен, чтобы вообще не использовать функции через точку, а вызывать их напрямую:

Однако, этот вариант не приветствуется в программировании на python, так как убирает некоторые полезные структуры, которые модуль предоставляет. До конца этого туториала мы будем использовать второй вариант импорта (import numpy as np).

Массивы

Главной особенностью numpy является объект array. Массивы схожи со списками в python, исключая тот факт, что элементы массива должны иметь одинаковый тип данных, как float и int. С массивами можно проводить числовые операции с большим объемом информации в разы быстрее и, главное, намного эффективнее чем со списками.

Создание массива из списка:

Здесь функция array принимает два аргумента: список для конвертации в массив и тип для каждого элемента. Ко всем элементам можно получить доступ и манипулировать ими так же, как вы бы это делали с обычными списками:

Массивы могут быть и многомерными. В отличии от списков можно использовать запятые в скобках. Вот пример двумерного массива (матрица):

Array slicing работает с многомерными массивами аналогично, как и с одномерными, применяя каждый срез, как фильтр для установленного измерения. Используйте «:» в измерении для указывания использования всех элементов этого измерения:

Метод shape возвращает количество строк и столбцов в матрице:

Метод dtype возвращает тип переменных, хранящихся в массиве:

Тут float64, это числовой тип данных в numpy, который используется для хранения вещественных чисел двойной точности. Так же как float в Python.

Метод len возвращает длину первого измерения (оси):

Метод in используется для проверки на наличие элемента в массиве:

Массивы можно переформировать при помощи метода, который задает новый многомерный массив. Следуя следующему примеру, мы переформатируем одномерный массив из десяти элементов во двумерный массив, состоящий из пяти строк и двух столбцов:

Обратите внимание, метод reshape создает новый массив, а не модифицирует оригинальный.

Имейте ввиду, связывание имен в python работает и с массивами. Метод copy используется для создания копии существующего массива в памяти:

Списки можно тоже создавать с массивов:

Можно также переконвертировать массив в бинарную строку (то есть, не human-readable форму). Используйте метод tostring для этого. Метод fromstring работает в для обратного преобразования. Эти операции иногда полезны для сохранения большого количества данных в файлах, которые могут быть считаны в будущем.

Заполнение массива одинаковым значением.

Транспонирование массивов также возможно, при этом создается новый массив:

Многомерный массив можно переконвертировать в одномерный при помощи метода flatten:

Два или больше массивов можно сконкатенировать при помощи метода concatenate:

Если массив не одномерный, можно задать ось, по которой будет происходить соединение. По умолчанию (не задавая значения оси), соединение будет происходить по первому измерению:

В заключении, размерность массива может быть увеличена при использовании константы newaxis в квадратных скобках:

Заметьте, тут каждый массив двумерный; созданный при помощи newaxis имеет размерность один. Метод newaxis подходит для удобного создания надлежаще-мерных массивов в векторной и матричной математике.

На этом у нас конец первой части перевода. Спасибо за внимание.

Источник

NumPy, часть 1: начало работы

NumPy — это библиотека языка Python, добавляющая поддержку больших многомерных массивов и матриц, вместе с большой библиотекой высокоуровневых (и очень быстрых) математических функций для операций с этими массивами.

Установка NumPy

На linux — пакет python3-numpy (или аналогичный для вашей системы), или через pip. Ну или же собирать из исходников https://sourceforge.net/projects/numpy/files/NumPy/.

На Windows на том же сайте есть exe установщики. Или, если возникают проблемы, рекомендую ещё хороший сборник библиотек http://www.lfd.uci.edu/

Начинаем работу

Основным объектом NumPy является однородный многомерный массив (в numpy называется numpy.ndarray). Это многомерный массив элементов (обычно чисел), одного типа.

Наиболее важные атрибуты объектов ndarray:

ndarray.ndim — число измерений (чаще их называют «оси») массива.

ndarray.shape — размеры массива, его форма. Это кортеж натуральных чисел, показывающий длину массива по каждой оси. Для матрицы из n строк и m столбов, shape будет (n,m). Число элементов кортежа shape равно ndim.

ndarray.size — количество элементов массива. Очевидно, равно произведению всех элементов атрибута shape.

ndarray.dtype — объект, описывающий тип элементов массива. Можно определить dtype, используя стандартные типы данных Python. NumPy здесь предоставляет целый букет возможностей, как встроенных, например: bool_, character, int8, int16, int32, int64, float8, float16, float32, float64, complex64, object_, так и возможность определить собственные типы данных, в том числе и составные.

ndarray.itemsize — размер каждого элемента массива в байтах.

ndarray.data — буфер, содержащий фактические элементы массива. Обычно не нужно использовать этот атрибут, так как обращаться к элементам массива проще всего с помощью индексов.

Создание массивов

В NumPy существует много способов создать массив. Один из наиболее простых — создать массив из обычных списков или кортежей Python, используя функцию numpy.array() (запомните: array — функция, создающая объект типа ndarray):

Функция array() трансформирует вложенные последовательности в многомерные массивы. Тип элементов массива зависит от типа элементов исходной последовательности (но можно и переопределить его в момент создания).

Можно также переопределить тип в момент создания:

Функция array() не единственная функция для создания массивов. Обычно элементы массива вначале неизвестны, а массив, в котором они будут храниться, уже нужен. Поэтому имеется несколько функций для того, чтобы создавать массивы с каким-то исходным содержимым (по умолчанию тип создаваемого массива — float64).

Функция zeros() создает массив из нулей, а функция ones() — массив из единиц. Обе функции принимают кортеж с размерами, и аргумент dtype:

Функция eye() создаёт единичную матрицу (двумерный массив)

Функция empty() создает массив без его заполнения. Исходное содержимое случайно и зависит от состояния памяти на момент создания массива (то есть от того мусора, что в ней хранится):

Для создания последовательностей чисел, в NumPy имеется функция arange(), аналогичная встроенной в Python range(), только вместо списков она возвращает массивы, и принимает не только целые значения:

Вообще, при использовании arange() с аргументами типа float, сложно быть уверенным в том, сколько элементов будет получено (из-за ограничения точности чисел с плавающей запятой). Поэтому, в таких случаях обычно лучше использовать функцию linspace(), которая вместо шага в качестве одного из аргументов принимает число, равное количеству нужных элементов:

fromfunction(): применяет функцию ко всем комбинациям индексов

Печать массивов

Если массив слишком большой, чтобы его печатать, NumPy автоматически скрывает центральную часть массива и выводит только его уголки.

Если вам действительно нужно увидеть весь массив, используйте функцию numpy.set_printoptions:

И вообще, с помощью этой функции можно настроить печать массивов «под себя». Функция numpy.set_printoptions принимает несколько аргументов:

precision : количество отображаемых цифр после запятой (по умолчанию 8).

threshold : количество элементов в массиве, вызывающее обрезание элементов (по умолчанию 1000).

edgeitems : количество элементов в начале и в конце каждой размерности массива (по умолчанию 3).

linewidth : количество символов в строке, после которых осуществляется перенос (по умолчанию 75).

suppress : если True, не печатает маленькие значения в scientific notation (по умолчанию False).

nanstr : строковое представление NaN (по умолчанию ‘nan’).

infstr : строковое представление inf (по умолчанию ‘inf’).

formatter : позволяет более тонко управлять печатью массивов. Здесь я его рассматривать не буду, можете почитать здесь (на английском).

И вообще, пользуйтесь официальной документацией по numpy, а в этом пособии я постараюсь описать всё необходимое. В следующей части мы рассмотрим базовые операции над массивами.

Источник

NumPy, часть 2: базовые операции над массивами

Здравствуйте! Я продолжаю работу над пособием по python-библиотеке NumPy.

В прошлой части мы научились создавать массивы и их печатать. Однако это не имеет смысла, если с ними ничего нельзя делать.

Сегодня мы познакомимся с операциями над массивами.

Базовые операции

Математические операции над массивами выполняются поэлементно. Создается новый массив, который заполняется результатами действия оператора.

Для этого, естественно, массивы должны быть одинаковых размеров.

Также можно производить математические операции между массивом и числом. В этом случае к каждому элементу прибавляется (или что вы там делаете) это число.

NumPy также предоставляет множество математических операций для обработки массивов:

Полный список можно посмотреть здесь.

Многие унарные операции, такие как, например, вычисление суммы всех элементов массива, представлены также и в виде методов класса ndarray.

По умолчанию, эти операции применяются к массиву, как если бы он был списком чисел, независимо от его формы. Однако, указав параметр axis, можно применить операцию для указанной оси массива:

Индексы, срезы, итерации

Одномерные массивы осуществляют операции индексирования, срезов и итераций очень схожим образом с обычными списками и другими последовательностями Python (разве что удалять с помощью срезов нельзя).

У многомерных массивов на каждую ось приходится один индекс. Индексы передаются в виде последовательности чисел, разделенных запятыми (то бишь, кортежами):

Когда индексов меньше, чем осей, отсутствующие индексы предполагаются дополненными с помощью срезов:

b[i] можно читать как b[i, ]. В NumPy это также может быть записано с помощью точек, как b[i, . ].

Например, если x имеет ранг 5 (то есть у него 5 осей), тогда

  • x[1, 2, . ] эквивалентно x[1, 2, :, :, :],
  • x[. , 3] то же самое, что x[:, :, :, :, 3] и
  • x[4, . , 5, :] это x[4, :, :, 5, :].

Итерирование многомерных массивов начинается с первой оси:

Однако, если нужно перебрать поэлементно весь массив, как если бы он был одномерным, для этого можно использовать атрибут flat:

Манипуляции с формой

Как уже говорилось, у массива есть форма (shape), определяемая числом элементов вдоль каждой оси:

Форма массива может быть изменена с помощью различных команд:

Порядок элементов в массиве в результате функции ravel() соответствует обычному «C-стилю», то есть, чем правее индекс, тем он «быстрее изменяется»: за элементом a[0,0] следует a[0,1]. Если одна форма массива была изменена на другую, массив переформировывается также в «C-стиле». Функции ravel() и reshape() также могут работать (при использовании дополнительного аргумента) в FORTRAN-стиле, в котором быстрее изменяется более левый индекс.

Метод reshape() возвращает ее аргумент с измененной формой, в то время как метод resize() изменяет сам массив:

Если при операции такой перестройки один из аргументов задается как -1, то он автоматически рассчитывается в соответствии с остальными заданными:

Объединение массивов

Несколько массивов могут быть объединены вместе вдоль разных осей с помощью функций hstack и vstack.

hstack() объединяет массивы по первым осям, vstack() — по последним:

Функция column_stack() объединяет одномерные массивы в качестве столбцов двумерного массива:

Аналогично для строк имеется функция row_stack().

Разбиение массива

Используя hsplit() вы можете разбить массив вдоль горизонтальной оси, указав либо число возвращаемых массивов одинаковой формы, либо номера столбцов, после которых массив разрезается «ножницами»:

Функция vsplit() разбивает массив вдоль вертикальной оси, а array_split() позволяет указать оси, вдоль которых произойдет разбиение.

Копии и представления

При работе с массивами, их данные иногда необходимо копировать в другой массив, а иногда нет. Это часто является источником путаницы. Возможно 3 случая:

Вообще никаких копий

Простое присваивание не создает ни копии массива, ни копии его данных:

Python передает изменяемые объекты как ссылки, поэтому вызовы функций также не создают копий.

Представление или поверхностная копия

Разные объекты массивов могут использовать одни и те же данные. Метод view() создает новый объект массива, являющийся представлением тех же данных.

Срез массива это представление:

Глубокая копия

Метод copy() создаст настоящую копию массива и его данных:

Источник

Читайте также:  Чем быстро вывести синяк над глазом от удара
Оцените статью