Кто вывел формулу площади треугольника

Содержание
  1. Как найти площадь треугольника
  2. Основные понятия
  3. Формула площади треугольника
  4. Общая формула
  5. 1. Площадь треугольника через две стороны и угол между ними.
  6. 2. Площадь треугольника через основание и высоту.
  7. 3. Площадь треугольника через описанную окружность и стороны.
  8. 4. Площадь треугольника через вписанную окружность и стороны.
  9. 5. Площадь треугольника по стороне и двум прилежащим углам.
  10. 6. Формула Герона для вычисления площади треугольника.
  11. Для прямоугольного треугольника
  12. Площадь треугольника с углом 90° по двум сторонам.
  13. Площадь треугольника по гипотенузе и острому углу.
  14. Площадь прямоугольного треугольника по катету и прилежащему углу.
  15. Площадь треугольника через гипотенузу и по радиусу вписанной окружности.
  16. Площадь треугольника вписанного в окружность.
  17. Площадь прямого треугольника по формуле Герона.
  18. Для равнобедренного треугольника
  19. Поиск площади через основание и сторону.
  20. Вычисление площади через основание и угол.
  21. Вычисление площади через основание и высоту.
  22. Поиск площади через боковые стороны и угол между ними.
  23. Площадь равнобедренного треугольника через основание и угол между боковыми сторонами.
  24. Площадь равностороннего треугольника через радиус описанной окружности.
  25. Площадь равностороннего треугольника через радиус вписанной окружности.
  26. Площадь равностороннего треугольника через сторону.
  27. Площадь равностороннего треугольника через высоту.
  28. Таблица формул нахождения площади треугольника
  29. Площадь треугольника
  30. Определение площади треугольника
  31. Формулы площади треугольника
  32. Ⅰ. Через высоту и основание
  33. Ⅱ. Через все стороны и периметр
  34. Ⅲ. Через две стороны и угол между ними
  35. Ⅳ. Через периметр и радиус вписанной окружности
  36. Ⅴ. Через все стороны и радиус описанной окружности
  37. Ⅵ. Через сторону и два прилежащих к ней угла
  38. Площадь треугольника
  39. Площадь треугольника формула

Как найти площадь треугольника

О чем эта статья:

Основные понятия

Треугольник — это геометрическая фигура, которая получилось из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

Читайте также:  Как вывести только дату без времени

Площадь — это численная характеристика, которая дает нам информацию о размере плоскости, ограниченной замкнутой геометрической фигурой.

Если параметры переданы в разных единицах длины, мы не сможем узнать какая площадь треугольника получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

Популярные единицы измерения

  • квадратный миллиметр (мм 2 );
  • квадратный сантиметр (см 2 );
  • квадратный дециметр (дм 2 );
  • квадратный метр (м 2 );
  • квадратный километр (км 2 );
  • гектар (га).

Формула площади треугольника

Для решения задач применяются различные формулы, в зависимости от известных исходных данных. Далее мы рассмотрим способы решения для всех типов треугольников, в том числе частные случаи для равносторонних, равнобедренных и прямоугольных фигур.

Быстро вычислить площадь треугольника поможет наш онлайн-калькулятор. Просто введите известные вам значения и получите ответ в метрах, сантиметрах или миллиметрах.

Общая формула

1. Площадь треугольника через две стороны и угол между ними.

S = 0,5 * a * b⋅sin(α) , где a, b — стороны, α — угол между ними.

2. Площадь треугольника через основание и высоту.

S = 0,5 * a * h, где a — основание, h — высота.

3. Площадь треугольника через описанную окружность и стороны.

S = (a * b * c) : (4 * R), где a, b, c — стороны, R — радиус описанной окружности.

4. Площадь треугольника через вписанную окружность и стороны.

S = r * (a + b + c) : 2, где a, b, c — стороны, r — радиус вписанной окружности.

Если учитывать, что (a + b + c) : 2 — это способ поиска полупериметра. Тогда формулу можно записать следующим образом:

S = r * p, где p — полупериметр.

5. Площадь треугольника по стороне и двум прилежащим углам.

S = a 2 : 2 * (sin(α)⋅sin(β)) : sin(180 — (α + β)), где a — сторона, α и β — прилежащие углы, γ — противолежащий угол.

6. Формула Герона для вычисления площади треугольника.

Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.

S = √ p * (p − a) * (p − b) * (p − c)​, где a, b, c — стороны, p — полупериметр, который можно найти по формуле: p = (a + b + c) : 2

Для прямоугольного треугольника

Площадь треугольника с углом 90° по двум сторонам.

S = 0,5 * a * b, где a, b — стороны.

Площадь треугольника по гипотенузе и острому углу.

S = 0,25 * c 2 * sin(2α), где c — гипотенуза, α — любой из прилегающих острых углов.

Гипотенузой принято называть сторону, которая лежит напротив прямого угла.

Площадь прямоугольного треугольника по катету и прилежащему углу.

S = 0,5 * a 2 * tg(α), где a — катет, α — прилежащий угол.

Катетом принято называть одну из двух сторон, образующих прямой угол.

Площадь треугольника через гипотенузу и по радиусу вписанной окружности.

S = r * (r + c), где c — гипотенуза, r — радиус вписанной окружности.

Площадь треугольника вписанного в окружность.

Площадь прямого треугольника по формуле Герона.

S = (p − a) * (p − b), где a, b — катеты, p — полупериметр, который рассчитывается по формуле p = (a + b + c) : 2.

Для равнобедренного треугольника

Поиск площади через основание и сторону.

S = b : 4 * √ 4 * a 2 − b 2 , где a — боковая сторона, b — основание.

Вычисление площади через основание и угол.

S = 0,5 * a * b * sin(α), где a — боковая сторона, b — основание, α — угол между основанием и стороной.

Вычисление площади через основание и высоту.

S = 0,5 * b * h, где b — основание, h — высота, проведенная к основанию.

Поиск площади через боковые стороны и угол между ними.

S = 0,5 * a 2 * sin(α), где a — боковая сторона, α — угол между боковыми сторонами.

Площадь равнобедренного треугольника через основание и угол между боковыми сторонами.

S = b 2 : (4 * tgα/2), где b — основание, α — угол между боковыми сторонами.

Площадь равностороннего треугольника через радиус описанной окружности.

S = (3 * √ 3 * R 2 ) : 4, где R — радиус описанной окружности.

Площадь равностороннего треугольника через радиус вписанной окружности.

S = 3 * √ 3 * r 2 , где r — радиус вписанной окружности.

Площадь равностороннего треугольника через сторону.

S = (√ 3 * a 2 ) : 4, где a — сторона.

Площадь равностороннего треугольника через высоту.

S = h 2 : √ 3, где h — высота.

Таблица формул нахождения площади треугольника

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

Записаться на марафон

Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

Источник

Площадь треугольника

Определение площади треугольника

Площадь треугольника — это величина, которая
показывает какие размеры у треугольника.

Сейчас, на примере покажем, что такое площадь,
а также, как можно найти площадь треугольника.

Площадь треугольника, можно очень легко объяснить
на примере прямоугольного треугольника в клеточном поле.
Площадь, в нашем случае, будет равна количеству клеток.

Для наглядности, нарисуем прямоугольный треугольник
ABC, со длинами сторон 3, 4 и 5, как на рисунке 2. Отметим, что он прямоугольный.

Посчитаем количество клеток, которые занимает треугольник.
3 полных клетки, и 4 неполных клетки, но для того, чтобы узнать
площадь треугольника в клеточном поле нам нужно узнать количество
полных клеток, которые занимает весь треугольник. Наша задача в том,
чтобы неполные клетки преобразовать в полные.

Для этого нарисуем второй треугольник, так,
чтобы получился прямоугольник, как на рисунке 3.

Как видим, весь прямоугольник занимает 12 полных клеток.

Формула площади прямоугольника равна произведению
одной стороны на другую — ​ \( S = ab \) ​,
поэтому площадь прямоугольника равна 3 * 4 = 12 клеткам.

Площадь треугольника, из которого состоит прямоугольник,
можно найти по другой формуле: ​ \( S = \frac<1>2 ab \) ​.
Подставив значения длин сторон, получаем — S = 0.5 * 3 * 4,
из чего следует, что S = 6 клетками, или же квадратным сантиметрам.

Прямоугольник можно условно разделить
на два треугольника, поэтому площадь треугольника
равна половине площади прямоугольника.

Формула площади треугольника — это формула,
по которой можно найти площадь треугольника.

Формулы площади треугольника применяют, только,
и только тогда, когда невозможно узнать площадь
треугольника, глядя на рисунок, или просто посчитав клетки.

Формулы площади треугольника

Ⅰ. Через высоту и основание

a — сторона, на которую падает высота,
b
— высота.

Самая известная формула площади треугольника.
Зная только высоту и сторону, на которую падает
эта высота, можно найти площадь треугольника.

Ⅱ. Через все стороны и периметр

p — полупериметр, вычисляется по формуле: ​ \( p = \frac <2>\) ​,
a, b, c — стороны треугольника.

Это формулу, нужно использовать когда известны
все три стороны треугольника. Зная три стороны
треугольника можно найти периметр, а дальше
найти и площадь заданного треугольника.

Эту формулу площади также называют формулой Герона.

Ⅲ. Через две стороны и угол между ними

\[ S = \frac<1> <2>a \cdot b \cdot \sin β \]

a, b — стороны между которыми расположен угол β,
sin β — синус угла β.

Формула применяется, когда известен
один из углов, и две стороны, образующие
этот угол. В некоторых задачах площадь
треугольника можно найти только по этой формуле.

Ⅳ. Через периметр и радиус вписанной окружности

\[ S = r \cdot \frac

2 \]

r — радиус вписанной окружности,
P
— периметр треугольника.

Тут даже не обязательно знать все стороны треугольника,
достаточно знать периметр и радиус описанной окружности.

Ⅴ. Через все стороны и радиус описанной окружности

abc — произведение всех сторон треугольника,
R — радиус описанной окружности.

Пожалуй, единственная формула, где площадь
треугольника можно найти только через радиус
описанной окружности и произведение трех сторон.

Ⅵ. Через сторону и два прилежащих к ней угла

a — сторона треугольника,
sin α — синус угла α,
sin β — синус угла β.

Готов поспорить, вы даже ни разу не видели этой формулы.
Эта очередная формула площади треугольника, применяется
в крайне редких случаях — когда известны два угла и сторона,
к которой эти углы примыкают.

Источник

Площадь треугольника

Площадь треугольника. Во многих задачах по геометрии связанных с вычислением площадей используются формулы площади треугольника. Их существует несколько, здесь мы рассмотрим основные. Перечислить эти формулы было бы слишком просто и пользы ни какой. Мы разберём происхождение основных формул, тех что используются наиболее чаще.

Перед тем как ознакомиться с выводом формул обязательно посмотрите статью о площади параллелограмма. После изучения материала вы без труда сможете восстановить формулы в памяти (если вдруг они «вылетят» в нужный вам момент).

Диагональ параллелограмма разбивает его на два равных по площади треугольника:

Следовательно площадь треугольника будет равна половине площади параллелограмма:

Площадь треугольника формула

*То есть если нам будет известна любая сторона треугольника и высота опущенная на эту сторону, то мы всегда сможем вычислить площадь этого треугольника.

Как уже было изложено в статье о площади параллелограмма формула имеет вид:

Площадь треугольника равна половине его площади, значит :

*То есть если будут известны любые две стороны в треугольнике и угол между ними, мы всегда сможем вычислить площадь такого треугольника.

Формула Герона (третья)

Данную формулу выводить сложно и вам это ни к чему. Посмотрите какая она красивая, можно сказать, что сама запоминается.

*Если даны три стороны треугольника, то по данной формуле мы всегда можем вычислить его площадь.

где r – радиус вписанной окружности

*Если известны три стороны треугольника и радиус вписанной в него окружности, то мы всегда можем найти площадь этого треугольника.

где R – радиус описанной окружности.

*Если известны три стороны треугольника и радиус описанной около него окружности, то мы всегда можем найти площадь такого треугольника.

Возникает вопрос: если известны три стороны треугольника, то не проще ли его площадь найти по формуле Герона!

Да, бывает проще, но не всегда, иногда возникает сложность. Это связано с извлечением корня. Кроме того, данные формулы очень удобно применять в задачах, где дана площадь треугольника, его стороны и требуется найти радиус вписанной или описанной окружности. Такие задания имеются в составе ЕГЭ.

Давайте отдельно рассмотрим формулу:

Она является частным случаем формулы площади многоугольника, в который вписана окружность:

Рассмотрим её на примере пятиугольника:

Соединим центр окружности с вершинами данного пятиугольника и опустим из центра перпендикуляры к его сторонам. Получим пять треугольников, при чём опущенные перпендикуляры являются радиусами вписанной окружности:

Площадь пятиугольника равна:

Теперь понятно, что если речь идёт о треугольнике, то данная формула приобретает вид:

Пусть сторона треугольника равна a, из противоположной вершины к этой стороне проведён произвольный отрезок образующий с ней угол (фи):

Данная формула используется очень редко на практике, возможно вы её видите впервые, ну так просто написал, чтобы знали. Её ещё можно вывести преобразовав формулу площади четырёхугольника:

Также она является следствием из формулы:

Что добавить? Есть ещё формулы треугольника связанные с координатами вершин, векторами на которых он построен. Об этом будет статья в будущем, не пропустите!

Площадь прямоугольного треугольника. Тут всё просто — она равна половине площади прямоугольника, то есть одной второй произведения катетов.

Источник

Оцените статью