Квадратное уравнение как вывести формулу

Как решать
квадратные уравнения

В предыдущих уроках мы разбирали «Как решать линейные уравнения», то есть уравнения первой степени. В этом уроке мы разберем, что называют квадратным уравнением и как его решать.

Что называют квадратным уравнением

Степень уравнения определяют по наибольшей степени, в которой стоит неизвестное.

Если максимальная степень, в которой стоит неизвестное — « 2 », значит, перед вами квадратное уравнение.

Примеры квадратных уравнений

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +
    1
    3

    = 0

  • x 2 + 0,25x = 0
  • x 2 − 8 = 0

Чтобы найти « a », « b » и « c » нужно сравнить свое уравнение с общим видом квадратного уравнения « ax 2 + bx + c = 0 ».

Давайте потренируемся определять коэффициенты « a », « b » и « c » в квадратных уравнениях.

Уравнение Коэффициенты
5x 2 − 14x + 17 = 0
  • a = 5
  • b = −14
  • с = 17
−7x 2 − 13x + 8 = 0
  • a = −7
  • b = −13
  • с = 8
−x 2 + x +
1
3

= 0

  • a = −1
  • b = 1
  • с =
    1
    3
x 2 + 0,25x = 0
  • a = 1
  • b = 0,25
  • с = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • с = −8

Как решать квадратные уравнения

В отличии от линейных уравнений для решения квадратных уравнений используется специальная формула для нахождения корней.

Чтобы решить квадратное уравнение нужно:

  • привести квадратное уравнение к общему виду « ax 2 + bx + c = 0 ». То есть в правой части должен остаться только « 0 »;
  • использовать формулу для корней:

Давайте на примере разберем, как применять формулу для нахождения корней квадратного уравнения. Решим квадратное уравнение.

Уравнение « x 2 − 3x − 4 = 0 » уже приведено к общему виду « ax 2 + bx + c = 0 » и не требует дополнительных упрощений. Для его решения нам достаточно применить формулу нахождения корней квадратного уравнения.

Определим коэффициенты « a », « b » и « c » для этого уравнения.

Уравнение Коэффициенты
x 2 − 3x − 4 = 0
  • a = 1
  • b = −3
  • с = −4

Подставим их в формулу и найдем корни.

x 2 − 3x − 4 = 0
x1;2 =

−b ± √ b 2 − 4ac
2a

x1;2 =

−(−3) ± √ (−3) 2 − 4 · 1· (−4)
2 · 1

x1;2 =

3 ± √ 9 + 16
2

x1;2 =

3 ± √ 25
2

x1;2 =

3 ± 5
2

x1 =
3 + 5
2
x2 =
3 − 5
2
x1 =
8
2
x2 =
−2
2
x1 = 4 x2 = −1

Ответ: x1 = 4 ; x2 = −1

Обязательно выучите наизусть формулу для нахождения корней.

С её помощью решается любое квадратное уравнение.

В формуле « x1;2 =

−b ± √ b 2 − 4ac
2a

» часто заменяют подкоренное выражение
« b 2 − 4ac » на букву « D » и называют дискриминантом . Более подробно понятие дискриминанта рассматривается в уроке «Что такое дискриминант».

Рассмотрим другой пример квадратного уравнения.

В данном виде определить коэффициенты « a », « b » и « c » довольно сложно. Давайте вначале приведем уравнение к общему виду « ax 2 + bx + c = 0 ».

Теперь можно использовать формулу для корней.

x1;2 =

−(−6) ± √ (−6) 2 − 4 · 1 · 9
2 · 1

x1;2 =

6 ± √ 36 − 36
2

x1;2 =

6 ± √ 0
2

x1;2 =

6 ± 0
2

x =

6
2

x = 3
Ответ: x = 3

Бывают случаи, когда в квадратных уравнениях нет корней. Такая ситуация возникает, когда в формуле под корнем оказывается отрицательное число.

Мы помним из определения квадратного корня о том, что извлекать квадратный корень из отрицательного числа нельзя .

Рассмотрим пример квадратного уравнения, у которого нет корней.

5x 2 + 2x = − 3
5x 2 + 2x + 3 = 0
x1;2 =

−2 ± √ 2 2 − 4 · 3 · 5
2 · 5

x1;2 =

−2 ± √ 4 − 60
10

x1;2 =

−2 ± √ −56
10

Ответ: нет действительных корней.

Итак, мы получили ситуацию, когда под корнем стоит отрицательное число. Это означает, что в уравнении нет корней. Поэтому в ответ мы так и записали «Нет действительных корней».

Что означают слова «нет действительных корней»? Почему нельзя просто написать «нет корней»?

На самом деле корни в таких случаях есть, но в рамках школьной программы они не проходятся, поэтому и в ответ мы записываем, что среди действительных чисел корней нет. Другими словами «Нет действительных корней».

Неполные квадратные уравнения

Иногда встречаются квадратные уравнения, в которых отсутсвуют в явном виде коэффициенты « b » и/или « c ». Как например, в таком уравнении:

Такие уравнения называют неполными квадратными уравнениями. Как их решать рассмотрено в уроке «Неполные квадратные уравнения».

Источник

Как вывести формулу для корней квадратного уравнения

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 10 человек(а).

Количество просмотров этой статьи: 18 309.

Эта статья рассматривает стандартное квадратное уравнение вида:

В статье выводится формула для корней квадратного уравнения методом дополнения до полного квадрата; числовые значения вместо a, b, c подставляться не будут.

Разделите обе стороны уравнения на а.

x 2 + (b/a)x + c/a = 0

Вычтите с/а из обеих сторон уравнения.

Разделите коэффициент при х (b/a) на 2, а затем результат возведите в квадрат. Прибавьте результат к обеим частям уравнения.

x 2 +(b/a)x+b 2 /4a 2 = -c/a + b 2 /4a 2

Упростите выражение, разложив на множители левую сторону и сложив члены на правой стороне (сначала найдите общий знаменатель).

(x + b/2a)(x + b/2a) = (-4ac/4a 2 ) + (b 2 /4a 2 )

(x + b/2a) 2 = (b 2 — 4ac)/4a 2

Извлеките квадратный корень из каждой стороны уравнения.

√((x + b/2a) 2 ) = ±√((b 2 — 4ac)/4a 2 )

x + b/2a = ±√(b 2 — 4ac)/2a

Вычтите b/2a из обеих сторон и вы получите формулу для корней квадратного уравнения.

Источник

Теорема Виета для квадратного уравнения

О чем эта статья:

Основные понятия

Квадратное уравнение — это ax 2 + bx + c = 0, где a — первый коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Существует три вида квадратных уравнений:

  • не имеют корней;
  • имеют один корень;
  • имеют два различных корня.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Формула для его поиска записывается так: D = b 2 − 4ac. Его свойства:

  • если D 0, есть два различных корня.

В математике теоремой принято называть утверждение, у которого ранее было сформулировано доказательство.

Формула Виета

Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Доказательство теоремы Виета

Дано квадратное уравнение x 2 + bx + c = 0. Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену:

Докажем, что следующие равенства верны

  • x₁ + x₂ = −b,
  • x₁ * x₂ = c.

Чтобы найти сумму корней x₁ и x₂ подставим вместо них то, что соответствует им из правой части формул корней. Напомним, что в данном квадратном уравнении x 2 + bx + c = 0 старший коэффициент равен единице. Значит после подстановки знаменатель будет равен 2.

    Объединим числитель и знаменатель в правой части.

Раскроем скобки и приведем подобные члены:

Сократим дробь полученную дробь на 2, остается −b:

Мы доказали: x₁ + x₂ = −b.

Далее произведем аналогичные действия, чтобы доказать о равенстве x₁ * x₂ свободному члену c.

    Подставим вместо x₁ и x₂ соответствующие части из формул корней квадратного уравнения:

Перемножаем числители и знаменатели между собой:

Очевидно, в числителе содержится произведение суммы и разности двух выражений. Поэтому воспользуемся тождеством (a + b) * (a − b) = a 2 − b 2 . Получаем:

Далее произведем трансформации в числителе:

Нам известно, что D = b2 − 4ac. Подставим это выражение вместо D.

Далее раскроем скобки и приведем подобные члены:

Сократим:

Мы доказали: x₁ * x₂ = c.

Значит сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком (x₁ + x₂ = −b), а произведение корней равно свободному члену (x₁ * x₂= c). Теорема доказана.

Обратная теорема Виета

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Она формулируется так:

Обратная теорема Виета

Если числа x₁ и x₂ таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа являются корнями x 2 + bx + c = 0.

Обратные теоремы зачастую сформулированы так, что их утверждением является заключение первой теоремы. Так, при доказательстве теоремы Виета стало понятно, что сумма x₁ и x₂ равна −b, а их произведение равно c. В обратной теореме это является утверждением.

Докажем теорему, обратную теореме Виета

Корни x₁ и x₂ обозначим как m и n. Тогда утверждение будет звучать следующим образом: если сумма чисел m и n равна второму коэффициенту x 2 + bx + c = 0, взятому с противоположным знаком, а произведение равно свободному члену, то числа m и n являются корнями x 2 + bx + c = 0.

Зафиксируем, что сумма m и n равна −b, а произведение равно c.

Чтобы доказать, что числа m и n являются корнями уравнения, нужно поочередно подставить буквы m и n вместо x, затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями x 2 + bx + c = 0.

    Выразим b из равенства m + n = −b. Это можно сделать, умножив обе части на −1:

Подставим m в уравнение вместо x, выражение −m − n подставим вместо b, а выражение mn — вместо c:

При x = m получается верное равенство. Значит число m является искомым корнем.

  1. Аналогично докажем, что число n является корнем уравнения. Подставим вместо x букву n, а вместо c подставим m * n, поскольку c = m * n.

    При x = n получается верное равенство. Значит число n является искомым корнем.

Мы доказали: числа m и n являются корнями уравнения x 2 + bx + c = 0.

Примеры

Для закрепления знаний рассмотрим примеры решения уравнений по теореме, обратной теореме Виета.

Дано: x 2 − 6x + 8 = 0.

Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.
2 − 6x + 8 = 0″ height=»59″ src=»https://lh6.googleusercontent.com/tFokx3SM93Hwlr7ZM9BqX1xiHKv_2dUIB9MoNa8RAwSTmQKXdCcqcFXxTZmxNGw7bOVek-RzRXqBkoCqnYMiqIYVwKhfnHeU-7mA03feEqJTlyKB7e-OsTTKgPaOlddfiaTGszcv» width=»99″>

Имея эти два равенства можно подобрать подходящие корни, которые будут удовлетворять как равенству обоим равенствам системы.

Подбор корней удобнее выполнять с помощью их произведения. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x₁ и x₂ надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x₁ + x₂ = 6. Значения 4 и 2 подходят обоим равенствам:

Значит числа 4 и 2 являются корнями уравнения x 2 − 6x + 8 = 0.
2 − 6x + 8 = 0″ height=»57″ src=»https://lh3.googleusercontent.com/rohB7Bvd-elMhTxEUuOhKqLJjqLAvo9VlJxZvOnMeDAHARfKT-SYOWb1WXTTWEN2h0oKbLl6wH7lc0IWL_vH3Si2AJGAGXVn8TPFDT_J1Wu2WeoQ-WP1qgXjCnZ99tWUkK2BOvF2″ width=»64″>

Неприведенное квадратное уравнение

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым, то есть его первый коэффициент равен единице:

ax 2 + bx + c = 0, где а = 1.

Если квадратное уравнение не является приведенным, но задание связано с применением теоремы, нужно обе части разделить на коэффициент, который располагается перед x 2 .

  1. Получилось следующее приведенное уравнение:

    Получается, коэффициент при x равен, свободный член —. Значит сумма и произведение корней будут иметь вид:

Рассмотрим пример неприведенного уравнения: 4x 2 + 5x + 1 = 0. Разделим обе его части на коэффициент перед x 2 , то есть на 4.

  • Получилось приведённое квадратное уравнение. Второй коэффициент которого равен, а свободный член.
  • Тогда в соответствии с теоремой Виета получаем:
  • Метод подбора помогает найти корни: −1 и
  • Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

    Записаться на марафон

    Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

    Источник

    Читайте также:  Когда мама идет стирать
    Оцените статью