- Длина вектора
- Как найти?
- Примеры решений
- Нахождение длины вектора, примеры и решения
- Длина вектора — основные формулы
- Длина вектора через координаты точек его начала и конца
- Нахождение длины вектора по теореме косинусов
- Вычисление длины (модуля) вектора в EXCEL
- 1. Вычисление длины вектора по его координатам
- 2. Нахождение длины вектора через координаты точек
- 3. Нахождение длины вектора по теореме косинусов
- 4. Нахождение длины вектора через координаты точек треугольника
- 5. Нахождение координат вектора через координаты точек
- Онлайн калькулятор. Модуль вектора. Длина вектора.
- Калькулятор для вычисления длины вектора (модуля вектора) по двум точкам
- Инструкция использования калькулятора для вычисления длины вектора
- Ввод даных в калькулятор для вычисления длины вектора (модуля вектора)
- Дополнительные возможности калькулятора для вычисления длины вектора (модуля вектора)
- Вычесления длины вектора (модуля вектора)
- Длина вектора
- Определение
- Нахождение длины вектора
- Длина вектора через координаты точек его начала и конца
- Нахождение длины вектора по теореме косинусов
Длина вектора
Как найти?
Формула длины вектора на плоскости:
Формула длины вектора в пространстве:
Если даны координаты точек начала и конца вектора $ A(a_x; a_y) $ и $ B(b_x; b_y) $, то найти длину можно по формулам:
Примеры решений
Пример 1 |
Найти длину вектора по его координатам $ \overline = (4;-3) $ |
Решение |
Ответ |
Длина вектора $|\overline| = 5 $ |
Пример 2 |
Найти длину вектора по координатам $ \overline=(4;2;4) $ |
Решение |
Ответ |
Длина вектора $|\overline|=6 $ |
Пример 3 |
Найти длину вектора, если известны координаты его начала и конца. $ A=(2;1), B=(-1;3) $ |
Решение |
Ответ |
$|\overline |
В статье мы ответили на вопрос:»Как найти длину вектора?» с помощью формул. А также рассмотрели практические примеры решения задач на плоскости и в пространстве. Следует заметить, что существуют аналогичные формулы для пространств больше, чем трёхмерные.
Источник
Нахождение длины вектора, примеры и решения
Длина вектора — основные формулы
Длину вектора a → будем обозначать a → . Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.
Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат O x y . Пусть в ней задан некоторый вектор a → с координатами a x ; a y . Введем формулу для нахождения длины (модуля) вектора a → через координаты a x и a y .
От начала координат отложим вектор O A → = a → . Определим соответственные проекции точки A на координатные оси как A x и A y . Теперь рассмотрим прямоугольник O A x A A y с диагональю O A .
Из теоремы Пифагора следует равенство O A 2 = O A x 2 + O A y 2 , откуда O A = O A x 2 + O A y 2 . Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что O A x 2 = a x 2 и O A y 2 = a y 2 , а по построению длина O A равна длине вектора O A → , значит, O A → = O A x 2 + O A y 2 .
Отсюда получается, что формула для нахождения длины вектора a → = a x ; a y имеет соответствующий вид: a → = a x 2 + a y 2 .
Если вектор a → дан в виде разложения по координатным векторам a → = a x · i → + a y · j → , то вычислить его длину можно по той же формуле a → = a x 2 + a y 2 , в данном случае коэффициенты a x и a y выступают в роли координат вектора a → в заданной системе координат.
Вычислить длину вектора a → = 7 ; e , заданного в прямоугольной системе координат.
Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатам a → = a x 2 + a y 2 : a → = 7 2 + e 2 = 49 + e
Формула для нахождения длины вектора a → = a x ; a y ; a z по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)
В данном случае O A 2 = O A x 2 + O A y 2 + O A z 2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда O A = O A x 2 + O A y 2 + O A z 2 . Из определения координат вектора можем записать следующие равенства O A x = a x ; O A y = a y ; O A z = a z ; , а длина ОА равна длине вектора, которую мы ищем, следовательно, O A → = O A x 2 + O A y 2 + O A z 2 .
Отсюда следует, что длина вектора a → = a x ; a y ; a z равна a → = a x 2 + a y 2 + a z 2 .
Вычислить длину вектора a → = 4 · i → — 3 · j → + 5 · k → , где i → , j → , k → — орты прямоугольной системы координат.
Дано разложение вектора a → = 4 · i → — 3 · j → + 5 · k → , его координаты равны a → = 4 , — 3 , 5 . Используя выше выведенную формулу получим a → = a x 2 + a y 2 + a z 2 = 4 2 + ( — 3 ) 2 + 5 2 = 5 2 .
Длина вектора через координаты точек его начала и конца
Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.
Итак, даны точки с заданными координатами A ( a x ; a y ) и B ( b x ; b y ) , отсюда вектор A B → имеет координаты ( b x — a x ; b y — a y ) значит, его длина может быть определена по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2
А если даны точки с заданными координатами A ( a x ; a y ; a z ) и B ( b x ; b y ; b z ) в трехмерном пространстве, то длину вектора A B → можно вычислить по формуле
A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2
Найти длину вектора A B → , если в прямоугольной системе координат A 1 , 3 , B — 3 , 1 .
Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим A B → = ( b x — a x ) 2 + ( b y — a y ) 2 : A B → = ( — 3 — 1 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 .
Второй вариант решения подразумевает под собой применение данных формул по очереди: A B → = ( — 3 — 1 ; 1 — 3 ) = ( — 4 ; 1 — 3 ) ; A B → = ( — 4 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 . —
Ответ: A B → = 20 — 2 3 .
Определить, при каких значениях длина вектора A B → равна 30 , если A ( 0 , 1 , 2 ) ; B ( 5 , 2 , λ 2 ) .
Для начала распишем длину вектора A B → по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 = ( 5 — 0 ) 2 + ( 2 — 1 ) 2 + ( λ 2 — 2 ) 2 = 26 + ( λ 2 — 2 ) 2
Затем полученное выражение приравняем к 30 , отсюда найдем искомые λ :
26 + ( λ 2 — 2 ) 2 = 30 26 + ( λ 2 — 2 ) 2 = 30 ( λ 2 — 2 ) 2 = 4 λ 2 — 2 = 2 и л и λ 2 — 2 = — 2 λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .
Ответ: λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .
Нахождение длины вектора по теореме косинусов
Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.
Пусть заданы длины двух векторов A B → , A C → и угол между ними (или косинус угла), а требуется найти длину вектора B C → или C B → . В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ A B C , вычислить длину стороны B C , которая и равна искомой длине вектора.
Рассмотрим такой случай на следующем примере.
Длины векторов A B → и A C → равны 3 и 7 соответственно, а угол между ними равен π 3 . Вычислить длину вектора B C → .
Длина вектора B C → в данном случае равна длине стороны B C треугольника △ A B C . Длины сторон A B и A C треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов: B C 2 = A B 2 + A C 2 — 2 · A B · A C · cos ∠ ( A B , → A C → ) = 3 2 + 7 2 — 2 · 3 · 7 · cos π 3 = 37 ⇒ B C = 37 Таким образом, B C → = 37 .
Итак, для нахождения длины вектора по координатам существуют следующие формулы a → = a x 2 + a y 2 или a → = a x 2 + a y 2 + a z 2 , по координатам точек начала и конца вектора A B → = ( b x — a x ) 2 + ( b y — a y ) 2 или A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 , в некоторых случаях следует использовать теорему косинусов.
Источник
Вычисление длины (модуля) вектора в EXCEL
history 14 декабря 2015 г.
Найдем длину вектора по его координатам (в прямоугольной системе координат), по координатам точек начала и конца вектора и по теореме косинусов (задано 2 вектора и угол между ними).
Вектор – это направленный отрезок прямой. Длина этого отрезка определяет числовое значение вектора и называется длиной вектора или модулем вектора.
1. Вычисление длины вектора по его координатам
Если даны координаты вектора в плоской (двухмерной) прямоугольной системе координат, т.е. известны a x и a y , то длину вектора можно найти по формуле
В случае вектора в пространстве добавляется третья координата
В MS EXCEL выражение =КОРЕНЬ(СУММКВ(B8:B9)) позволяет вычислить модуль вектора (предполагается, что координаторы вектора введены в ячейки B8:B9 , см. файл примера ).
Функция СУММКВ() возвращает сумму квадратов аргументов, т.е. в данном случае эквивалентна формуле = B8*B8+B9*B9 .
В файле примера также вычислена длина вектора в пространстве.
Альтернативной формулой является выражение =КОРЕНЬ(СУММПРОИЗВ(B8:B9;B8:B9)) .
2. Нахождение длины вектора через координаты точек
Если вектор задан через координаты точек его начала и конца, то формула будет другой =КОРЕНЬ(СУММКВРАЗН(C28:C29;B28:B29))
В формуле предполагается, что координаты точек начала и конца введены в диапазоны C28:C29 и B28:B29 соответственно.
Функция СУММКВРАЗН() в озвращает сумму квадратов разностей соответствующих значений в двух массивах.
По сути, в формуле сначала вычисляются координаты вектора (разности соответствующих координат точек), затем вычисляется сумма их квадратов.
3. Нахождение длины вектора по теореме косинусов
Если требуется найти длину вектора по теореме косинусов, то обычно заданы 2 вектора (их модули и угол между ними).
Найдем длину вектора с используя формулу =КОРЕНЬ(СУММКВ(B43:C43)-2*B43*C43*COS(B45))
В ячейках B43:B43 содержатся длины векторов а и b, а в ячейке В45 — угол между ними в радианах (в долях числа ПИ() ).
Если угол задан в градусах, то формула будет немного отличаться =КОРЕНЬ(B43*B43+C43*C43-2*B43*C43*COS(B46*ПИ()/180))
Примечание : для наглядности в ячейке со значением угла в градусах можно применить пользовательский формат , см. например, статью Отображение широты и долготы в MS EXCEL
4. Нахождение длины вектора через координаты точек треугольника
Пусть заданы 3 точки треугольника, образованного векторами.
Найдем длину вектора ВС через координаты соответствующих точек (аналогично 2-й задаче, рассмотренной выше) по формуле =КОРЕНЬ(СУММКВРАЗН(C54:C55;D54:D55)) .
Зная координаты точек можно найти все длины сторон (длины векторов) и углы треугольника (по теореме косинусов).
5. Нахождение координат вектора через координаты точек
Сделаем в MS EXCEL удобную форму для вычисления координат вектора и его длины через координаты точек. Также отобразим как сами точки, так и сам вектор.
Источник
Онлайн калькулятор. Модуль вектора. Длина вектора.
Этот онлайн калькулятор позволит вам очень просто найти длину вектора для плоских и пространственных задач.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление модуля вектора и закрепить пройденый материал.
Калькулятор для вычисления длины вектора (модуля вектора) по двум точкам
Размерность вектора:
Форма представления вектора:
Инструкция использования калькулятора для вычисления длины вектора
Ввод даных в калькулятор для вычисления длины вектора (модуля вектора)
В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел..
Дополнительные возможности калькулятора для вычисления длины вектора (модуля вектора)
- Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.
Вычесления длины вектора (модуля вектора)
Например, для вектора a = x; ay; az> длина вектора вычисляется cледующим образом:
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Источник
Длина вектора
Определение
Длина вектора (модуль вектора) — длина направленного отрезка, которая определяет числовое значение вектора.
Обозначается, как \(\left|\vec AB\right|\)
Нахождение длины вектора
Формула нахождения длины вектора \(\vec a\) зависит от его расположения. Если он находится в плоскости, то есть \(\vec a=\left(a_x;a_y\right)\) , то для вычисления потребуется формула:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Узнать длину вектора \(\vec a\) по его координатам (5; -3).
Исходные данные \(a_x=5,\) \(a_y=-3\) подставляем в формулу и вычисляем.
Если же вектор находится в пространственной системе, то есть \(\vec a=\left(a_x;a_y;a_z\right),\) то для вычисления потребуется формула:
Узнать длину вектора \(\vec a\) по его координатам (2; 2; 4).
Подставляем данные координат из условия и вычисляем:
Длина вектора через координаты точек его начала и конца
В предыдущем разделе мы нашли длину вектора с помощью координат. Но если они неизвестны, то длину можно посчитать через координаты точек его начала и конца.
Если даны две точки: \(A\left(a_x;a_y\right) и B\left(b_x;b_y\right),\) то вектор \(\vec AB \) имеет координаты \(\left(b_x-a_x;b_y-a_y\right).\)
Отсюда следует формула:
Узнать длину вектора \(\vec AB\) , если А (1; 3), В (3; 6).
Формула для трехмерного пространства выглядит следующим образом:
Узнать длину вектора \(\vec AB\) , если А (0; 1; 3), В (2; 3; 6).
Нахождение длины вектора по теореме косинусов
Однако по условию задач координаты вектора не всегда известны. Тогда приходится искать иные пути решения.
К примеру, известны длины двух векторов \( \vec AB\) и \(\vec AC\) , а также угол между ними. Необходимо выяснить, длину вектора \(\vec BC\) . В этом случае, чтобы определить векторное значение, следует можно обратиться к теореме косинусов.
Теорема косинусов — квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
Длина вектора \(\vec AB=2\) , \(\vec AC=4\) , а угол между ними \(=\frac\pi4.\)
Вычислить длину вектора \(\vec BC.\)
Длина вектора \(\vec BC\) равна длине стороны BC треугольника ΔABC.
Исходные данные позволяют воспользоваться теоремой косинусов, так как длины стороны треугольника известны из условия (они равны длинам векторов \(\vec AB\) и \(\vec AC\) ). И угол между ними тоже известен.
\(BC^2=AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos\angle\left(\vec AB,\vec AC\right)=2^2+4^2-2\cdot2\cdot4\cdot\cos\frac\pi4=4+16-8\sqrt2=20-8\sqrt2\)
Источник