- Формулы пружинного маятника
- Определение и формулы пружинного маятника
- Уравнения колебаний пружинного маятника
- Формулы периода и частоты колебаний пружинного маятника
- Формулы амплитуды и начальной фазы пружинного маятника
- Энергия колебаний пружинного маятника
- Примеры задач с решением
- Формула периода колебаний пружинного маятника
- Уравнение колебаний пружинного маятника
- Формулы периода колебаний пружинного маятника
- Примеры задач на период колебаний
- Период колебания пружинного маятника
- Частота и период колебаний пружинного маятника
- Примеры задач на период колебания пружинного маятника
- Период пружинного маятника
- Определение и основные понятия пружинного маятника
- Период колебаний пружинного маятника
- Примеры задач на колебания пружинного маятника
Формулы пружинного маятника
Определение и формулы пружинного маятника
Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.
Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.
Уравнения колебаний пружинного маятника
Пружинный маятник, совершающий свободные колебания является примером гармонического осциллятора. Допустим, что маятник совершает колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза имеет вид:
где $<щu>^2_0=\frac
где $<\omega >_0=\sqrt<\frac
В экспоненциальном виде колебания пружинного маятника можно записать как:
\[Re\ \tilde
Формулы периода и частоты колебаний пружинного маятника
Если в упругих колебаниях выполняется закон Гука, то период колебаний пружинного маятника вычисляют при помощи формулы:
Так как частота колебаний ($\nu $) — величина обратная к периоду, то:
Формулы амплитуды и начальной фазы пружинного маятника
Зная уравнение колебаний пружинного маятника (1 или 2) и начальные условия можно полностью описать гармонические колебания пружинного маятника. Начальные условия определяют амплитуда ($A$) и начальная фаза колебаний ($\varphi $).
Амплитуду можно найти как:
начальная фаза при этом:
где $v_0$ — скорость груза при $t=0\ c$, когда координата груза равна $x_0$.
Энергия колебаний пружинного маятника
При одномерном движении пружинного маятника между двумя точками его движения существует только один путь, следовательно, выполняется условие потенциальности силы (любую силу можно считать потенциальной, если она зависит только от координат). Так как силы, действующие на пружинный маятник потенциальны, то можно говорить о потенциальной энергии.
Пусть пружинный маятник совершает колебания в горизонтальной плоскости (рис.2). За ноль потенциальной энергии маятника примем положение его равновесия, где поместим начало координат. Силы трения не учитываем. Используя формулу, связывающую потенциальную силу и потенциальную энергию для одномерного случая:
учитывая, что для пружинного маятника $F=-kx$,
тогда потенциальная энергия ($E_p$) пружинного маятника равна:
Закон сохранения энергии для пружинного маятника запишем как:
где $\dot
Из формулы (10) можно сделать следующие выводы:
- Максимальная кинетическая энергия маятника равна его максимальной потенциальной энергии.
- Средняя кинетическая энергия по времени осциллятора равна его средней по времени потенциальной энергии.
Примеры задач с решением
Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600\ \frac<Н><м>$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1\ \frac<м><с>$?
Решение. Сделаем рисунок.
По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:
где $E_
Потенциальная энергия равна:
В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:
Из (1.4) выразим искомую величину:
Вычислим начальное (максимальное) смещение груза от положения равновесия:
Ответ. $x_0=1,5$ мм
Задание. Пружинный маятник совершает колебания по закону: $x=A<\cos \left(\omega t\right),\ \ >\ $где $A$ и $\omega $ — постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_
Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:
Потенциальную энергию колебаний груза найдем как:
В момент времени, который следует найти $F=F_0$; $E_p=E_
Источник
Формула периода колебаний пружинного маятника
Период — это минимальное время, за которое совершается одно полное колебательное движение.
Обозначают период буквой $T$.
где $\Delta t$ — время колебаний; $N$ — число полных колебаний.
Уравнение колебаний пружинного маятника
Рассмотрим простейшую колебательную систему, в которой можно реализовать механические колебания. Это груз массы $m$, подвешенный на пружине, коэффициент упругости которой равен $k\ $(рис.1). Рассмотри вертикальное движение груза, которое обусловлено действием силы тяжести и силы упругости пружины. В состоянии равновесия такой системы, сила упругости равна по величине силе тяжести. Колебания пружинного маятника возникают, когда систему выводят из состояния равновесия, например, слегка дополнительно растянув пружину, после этого маятник предоставляют самому себе.
Допустим, что масса пружины мала в сравнении с массой груза, при описании колебаний ее учитывать не будем. Началом отсчета будем считать точку на оси координат (X), которая совпадает с положением равновесия груза. В этом положении пружина уже имеет удлинение, которое обозначим $b$. Растяжение пружины происходит из-за действия на груз силы тяжести, следовательно:
Если груз смещают дополнительно, но закон Гука еще выполняется, то сила упругости пружины становится равна:
Ускорение груза запишем, помня, что движение происходит по оси X, как:
Второй закон Ньютона для груза принимает вид:
Учтем равенство (2), формулу (5) преобразуем к виду:
Если ввести обозначение: $<\omega >^2_0=\frac
где $<\omega >^2_0=\frac
где $<\omega >_0=\sqrt<\frac
Формулы периода колебаний пружинного маятника
Мы получили, что колебания пружинного маятника описывается функцией косинус или синус. Это периодические функции, значит, смещение $x$ будет принимать равные значения через определенные одинаковые промежутки времени, которые называют периодом колебаний. Обозначают период буквой T.
Еще одной величиной, характеризующей колебания является величина обратная периоду колебаний, ее называют частотой ($\nu $):
Период связан с циклической частотой колебаний как:
Выше мы получали для пружинного маятника $<\omega >_0=\sqrt<\frac
Формула периода колебаний пружинного маятника (11) показывает, что $T$ зависит от массы груза, прикрепленного к пружине и коэффициента упругости пружины, но не зависит от амплитуды колебаний (A). Данное свойство колебаний называют изохронностью. Изохронность выполняется до тех пор, пока справедлив закон Гука. При больших растяжениях пружины закон Гука нарушается, появляется зависимость колебаний от амплитуды. Подчеркнем, что формула (11) для вычисления периода колебаний пружинного маятника справедлива при малых колебаниях.
Примеры задач на период колебаний
Задание. Пружинный маятник совершил 50 полных колебаний за время равное 10 с . Каков период колебаний маятника? Чему равна частота этих колебаний?
Решение. Так как период — это минимальное время необходимое маятнику для совершения одного полного колебания, то найдем его как:
Частота — величина обратная периоду, следовательно:
Вычислим частоту колебаний:
Ответ. $1)\ T=0,2$ с; 2) 5Гц
Задание.Две пружины, имеющие коэффициенты упругости $k_1$ и $k_2$ соединены параллельно (рис.2), к системе присоединен груз массы $M$. Каков период колебаний полученного пружинного маятника, если массами пружин можно пренебречь, сила упругости, действующая на груз, подчиняется закону Гука?
Решение. Воспользуемся формулой для вычисления периода колебаний пружинного маятника:
При параллельном соединении пружин результирующая жесткость системы находится как:
Это означают, что вместо $k$ в формулу для вычисления периода пружинного маятника подставим правую часть выражения (2.2), имеем:
Ответ. $T=2\pi \sqrt<\frac
Источник
Период колебания пружинного маятника
Рассмотрим простейшую систему, в которой возможна реализация механических колебаний. Допустим, что на упругой пружине, жесткость которой равна $k,$ подвешен груз массой $m$. Груз движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе. Массу пружины считаем малой в сравнении с массой груза.
Уравнение движения груза при таких колебаниях имеет вид:
где $<\omega >^2_0=\frac
где $<\omega >_0=\sqrt<\frac
Частота и период колебаний пружинного маятника
Косинус (синус) — периодическая функция, смещение $x$ будет принимать одинаковые значения через определенные одинаковые промежутки времени, которые называют периодом колебаний. Обозначают период буквой T.
Еще одной величиной, характеризующей колебания является величина обратная периоду колебаний, ее называют частотой ($\nu $):
Период связан с циклической частотой колебаний как:
Зная, что для пружинного маятника $<\omega >_0=\sqrt<\frac
Из выражения (5) мы видим, что период колебаний пружинного маятника зависит от массы груза, находящегося на пружине и коэффициента упругости пружины, но не зависит от амплитуды колебаний (A). Такое свойство колебаний называют изохронностью. Изохронность выполняется до тех пор, пока справедлив закон Гука. При больших растяжениях пружины закон Гука нарушается, при этом возникает зависимость колебаний от амплитуды. Отметим, что формула (5) для вычисления периода колебаний пружинного маятника справедлива при малых колебаниях.
Единицей измерения периода являются единицы времени, в Международной системе единиц это секунды:
Примеры задач на период колебания пружинного маятника
Задание. К упругой пружине прикрепили небольшой груз, при этом пружина растянулась на $\Delta x$=0,09 м. Каким будет период колебаний данного пружинного маятника, если его вывести из равновесия?
Решение. Сделаем рисунок.
Рассмотрим состояние равновесия пружинного маятника. Груз прикрепили, после этого пружина растянулась на величину $\Delta x$, маятник находится в состоянии равновесия. На груз действуют две силы: сила тяжести и сила упругости. Запишем второй закон Ньютона для состояния равновесия груза:
Запишем проекцию уравнения (1.1) на ось Y:
Так как груз по условию задачи небольшой, пружина растянулась не сильно, следовательно выполняется закон Гука, величину силы упругости найдем как:
\[F_u=k\Delta x\ \left(1.3\right).\]
Используя выражения (1.2) и (1.3) найдем отношение $\frac
Период колебаний пружинного маятника при малых колебаниях можно найти, используя выражение:
Заменяя отношение массы груза к жесткости пружины на правую часть выражения (1.4), получим:
Вычислим период колебаний нашего маятника, если $g=9,8\ \frac<м><с^2>$:
Ответ. $T$=0,6 с
Задание. Две пружины с жесткостями $k_1$ и $k_2$ соединены последовательно (рис.2), к концу второй пружины присоединен груз массы $m$, Каков период колебаний данного пружинного маятника, если массами пружин можно пренебречь, сила упругости, действующая на груз, подчиняется закону Гука.
Решение.Период колебаний пружинного маятника равен:
Если две пружины соединены последовательно, то их результирующая жесткость ($k$) находится как:
Вместо $k$ в формулу для вычисления периода пружинного маятника подставим правую часть выражения (2.2), имеем:
Источник
Период пружинного маятника
Определение и основные понятия пружинного маятника
Одной из самых простых систем, в которой можно возбудить механические колебания является система, состоящая из пружины, с коэффициентом упругости $k$, на которой подвешен груз с массой $m$. Пусть система расположена вертикально. На груз действуют сила упругости и сила тяжести, если систему вывести из состояния равновесия и предоставить самой себе, то груз будет совершать колебания. Массу пружины считаем малой в сравнении с массой груза, поэтому ее не будем учитывать при рассмотрении колебаний.
Рассмотрим движение груза, направив ось координат X вдоль оси пружины. Уравнение колебаний груза пружинного маятника принимает вид:
где $x$ — смещение груза из положения равновесия; $<\omega >^2_0=\frac
где $<\omega >_0=\sqrt<\frac
Период колебаний пружинного маятника
Косинус является периодической функцией, следовательно, смещение $x$ будет принимать одинаковые значения через определенные одинаковые промежутки времени, которые называются периодом колебаний. Его обозначают буквой.
Другая величина, характеризующая колебания, это величина обратная периоду колебаний, называемая частотой ($\nu $):
Период связан с циклической частотой колебаний как:
Для пружинного маятника $<\omega >_0=\sqrt<\frac
Формула (5), говорит о том, что период колебаний пружинного маятника пропорционален квадратному корню от массы груза, подвешенного к пружине, обратно пропорционален квадратному корню от коэффициента упругости пружины, и не зависит от амплитуды колебаний (A). Это свойство колебаний называется изохронностью. Изохронность реализуется до тех пор, пока справедлив закон Гука. При больших растяжениях пружины закон Гука нарушается, и появляется зависимость периода колебаний от амплитуды. Следует сказать, что выражение (5) для вычисления периода колебаний пружинного маятника справедливо при малых колебаниях.
Единица измерения периода это единицы времени, в Международной системе единиц это секунды:
Примеры задач на колебания пружинного маятника
Задание: Пружинный маятник совершает гармонические колебания. В некоторый момент времени смещение его равно $x\left(t’\right)=5$ см, ускорение $\ddot
Решение: Период колебаний для нашего маятника будем находить, используя выражение:
Уравнением гармонических колебаний пружинного маятника считаем выражение:
В некоторый момент времени $t’$ по условию задачи:
Скорость колебаний груза на пружине из (1.1) найдем как:
Ускорение груза вычисляют:
Для момента времени $t’$ ускорение по условию равно:
Зная циклическую частоту, получим в соответствии с (1.1) период равным:
Ответ: Т=1,57 с
Задание: Груз, имеющий массу $m=0,25$ кг, подвесили к пружине, и заставили совершать колебания по вертикали (рис.1). Период колебаний составляет $T=1$ c. Какова при этом жесткость пружины?
Решение: Сделаем рисунок.
Будем считать, что груз, подвешенный к пружине в нашей задаче, совершает малые гармонические колебания. Тогда период его колебаний груза определяют как:
Из этой формулы найдем коэффициент упругости пружины:
Вычислим жесткость пружины:
Ответ: $k\approx 9,9\frac<Н><м>$
Источник