- Урок №71. Генерация случайных чисел
- Генератор псевдослучайных чисел
- Функции srand() и rand()
- Стартовое число и последовательности в ГПСЧ
- Генерация случайных чисел в заданном диапазоне
- Какой ГПСЧ является хорошим?
- Почему rand() является посредственным ГПСЧ?
- Отладка программ, использующих случайные числа
- Рандомные числа в C++11
- Генерация случайных чисел в языке Си
- Функция rand().
- Ограничить случайные числа сверху.
- Ограничить числа снизу.
- Задать границы функции rand сверху и снизу.
- Функция srand().
- Практика
Урок №71. Генерация случайных чисел
Обновл. 13 Сен 2021 |
Возможность генерировать случайные числа очень полезна в некоторых видах программ, в частности, в играх, программах научного или статистического моделирования. Возьмем, к примеру, игры без рандомных (или «случайных») событий — монстры всегда будут атаковать вас одинаково, вы всегда будете находить одни и те же предметы/артефакты, макеты темниц и подземелий никогда не будут меняться и т.д. В общем, сюжет такой игры не очень интересен и вряд ли вы будете в нее долго играть.
Генератор псевдослучайных чисел
Так как же генерировать случайные числа? В реальной жизни мы часто бросаем монетку (орел/решка), кости или перетасовываем карты. Эти события включают в себя так много физических переменных (например, сила тяжести, трение, сопротивление воздуха и т.д.), что они становятся почти невозможными для прогнозирования/контроля и выдают результаты, которые во всех смыслах являются случайными.
Однако компьютеры не предназначены для использования физических переменных — они не могут подбросить монетку, бросить кости или перетасовать реальные карты. Компьютеры живут в контролируемом электрическом мире, где есть только два значения (true и false), чего-то среднего между ними нет. По своей природе компьютеры предназначены для получения прогнозируемых результатов. Когда мы говорим компьютеру посчитать, сколько будет 2 + 2 , мы всегда хотим, чтобы ответом было 4 (не 3 и не 5 ).
Следовательно, компьютеры неспособны генерировать случайные числа. Вместо этого они могут имитировать случайность, что достигается с помощью генераторов псевдослучайных чисел.
Генератор псевдослучайных чисел (сокр. «ГПСЧ») — это программа, которая принимает стартовое/начальное значение и выполняет с ним определенные математические операции, чтобы конвертировать его в другое число, которое совсем не связано со стартовым. Затем программа использует новое сгенерированное значение и выполняет с ним те же математические операции, что и с начальным числом, чтобы конвертировать его в еще одно новое число — третье, которое не связано ни с первым, ни со вторым. Применяя этот алгоритм к последнему сгенерированному значению, программа может генерировать целый ряд новых чисел, которые будут казаться случайными (при условии, что алгоритм будет достаточно сложным).
На самом деле, написать простой ГПСЧ не так уж и сложно. Вот небольшая программа, которая генерирует 100 рандомных чисел:
Результат выполнения программы:
18256 4675 32406 6217 27484
975 28066 13525 25960 2907
12974 26465 13684 10471 19898
12269 23424 23667 16070 3705
22412 9727 1490 773 10648
1419 8926 3473 20900 31511
5610 11805 20400 1699 24310
25769 9148 10287 32258 12597
19912 24507 29454 5057 19924
11591 15898 3149 9184 4307
24358 6873 20460 2655 22066
16229 20984 6635 9022 31217
10756 16247 17994 19069 22544
31491 16214 12553 23580 19599
3682 11669 13864 13339 13166
16417 26164 12711 11898 26797
27712 17715 32646 10041 18508
28351 9874 31685 31320 11851
9118 26193 612 983 30378
26333 24688 28515 8118 32105
Каждое число кажется случайным по отношению к предыдущему. Главный недостаток этого алгоритма — его примитивность.
Функции srand() и rand()
Языки Cи и C++ имеют свои собственные встроенные генераторы случайных чисел. Они реализованы в двух отдельных функциях, которые находятся в заголовочном файле cstdlib:
Функция srand() устанавливает передаваемое пользователем значение в качестве стартового. srand() следует вызывать только один раз — в начале программы (обычно в верхней части функции main()).
Функция rand() генерирует следующее случайное число в последовательности. Оно будет находиться в диапазоне от 0 до RAND_MAX (константа в cstdlib, значением которой является 32767 ).
Вот пример программы, в которой используются обе эти функции:
Результат выполнения программы:
14867 24680 8872 25432 21865
17285 18997 10570 16397 30572
22339 31508 1553 124 779
6687 23563 5754 25989 16527
19808 10702 13777 28696 8131
18671 27093 8979 4088 31260
31016 5073 19422 23885 18222
3631 19884 10857 30853 32618
31867 24505 14240 14389 13829
13469 11442 5385 9644 9341
11470 189 3262 9731 25676
1366 24567 25223 110 24352
24135 459 7236 17918 1238
24041 29900 24830 1094 13193
10334 6192 6968 8791 1351
14521 31249 4533 11189 7971
5118 19884 1747 23543 309
28713 24884 1678 22142 27238
6261 12836 5618 17062 13342
14638 7427 23077 25546 21229
Стартовое число и последовательности в ГПСЧ
Если вы запустите вышеприведенную программу (генерация случайных чисел) несколько раз, то заметите, что в результатах всегда находятся одни и те же числа! Это означает, что, хотя каждое число в последовательности кажется случайным относительно предыдущего, вся последовательность не является случайной вообще! А это, в свою очередь, означает, что наша программа полностью предсказуема (одни и те же значения ввода приводят к одним и тем же значениям вывода). Бывают случаи, когда это может быть полезно или даже желательно (например, если вы хотите, чтобы научная симуляция повторялась, или вы пытаетесь исправить причины сбоя вашего генератора случайных подземелий в игре).
Но в большинстве случаев это не совсем то, что нам нужно. Если вы пишете игру типа Hi-Lo (где у пользователя есть 10 попыток угадать число, а компьютер говорит ему, насколько его предположения близки или далеки от реального числа), вы бы не хотели, чтобы программа выбирала одни и те же числа каждый раз. Поэтому давайте более подробно рассмотрим, почему это происходит и как это можно исправить.
Помните, что каждое новое число в последовательности ГПСЧ генерируется исходя из предыдущего определенным способом. Таким образом, при постоянном начальном числе ГПСЧ всегда будет генерировать одну и ту же последовательность! В программе, приведенной выше, последовательность чисел всегда одинакова, так как стартовое число всегда равно 4541 .
Чтобы это исправить нам нужен способ выбрать стартовое число, которое не будет фиксированным значением. Первое, что приходит на ум — использовать рандомное число! Это хорошая мысль, но если нам нужно случайное число для генерации случайных чисел, то это какой-то замкнутый круг, вам не кажется? Оказывается, нам не обязательно использовать случайное стартовое число — нам просто нужно выбрать что-то, что будет меняться каждый раз при новом запуске программы. Затем мы сможем использовать наш ГПСЧ для генерации уникальной последовательности рандомных чисел исходя из уникального стартового числа.
Общепринятым решением является использование системных часов. Каждый раз, при запуске программы, время будет другое. Если мы будем использовать значение времени в качестве стартового числа, то наша программа всегда будет генерировать разную последовательность чисел при каждом новом запуске!
В языке Cи есть функция time(), которая возвращает в качестве времени общее количество секунд, прошедшее от полуночи 1 января 1970 года. Чтобы использовать эту функцию, нам просто нужно подключить заголовочный файл ctime, а затем инициализировать функцию srand() вызовом функции time(0) .
Вот вышеприведенная программа, но уже с использованием функции time() в качестве стартового числа:
Теперь наша программа будет генерировать разные последовательности случайных чисел! Попробуйте сами.
Генерация случайных чисел в заданном диапазоне
В большинстве случаев нам не нужны рандомные числа между 0 и RAND_MAX — нам нужны числа между двумя другими значениями: min и max . Например, если нам нужно сымитировать бросок кубика, то диапазон значений будет невелик: от 1 до 6 .
Вот небольшая функция, которая конвертирует результат функции rand() в нужный нам диапазон значений:
Чтобы сымитировать бросок кубика, вызываем функцию getRandomNumber(1, 6) .
Какой ГПСЧ является хорошим?
Как мы уже говорили, генератор случайных чисел, который мы написали выше, не является очень хорошим. Сейчас рассмотрим почему.
Хороший ГПСЧ должен иметь ряд свойств:
Свойство №1: ГПСЧ должен генерировать каждое новое число с примерно одинаковой вероятностью. Это называется равномерностью распределения. Если некоторые числа генерируются чаще, чем другие, то результат программы, использующей ГПСЧ, будет предсказуем! Например, предположим, вы пытаетесь написать генератор случайных предметов для игры. Вы выбираете случайное число от 1 до 10, и, если результатом будет 10, игрок получит крутой предмет вместо среднего. Шансы должны быть 1 к 10. Но, если ваш ГПСЧ неравномерно генерирует числа, например, десятки генерируются чаще, чем должны, то ваши игроки будут получать более редкие предметы чаще, чем предполагалось, и сложность, и интерес к такой игре автоматически уменьшаются.
Создать ГПСЧ, который бы генерировал равномерные результаты — сложно, и это одна из главных причин, по которым ГПСЧ, который мы написали в начале этого урока, не является очень хорошим.
Свойство №2: Метод, с помощью которого генерируется следующее число в последовательности, не должен быть очевиден или предсказуем. Например, рассмотрим следующий алгоритм ГПСЧ: num = num + 1 . У него есть равномерность распределения рандомных чисел, но это не спасает его от примитивности и предсказуемости!
Свойство №3: ГПСЧ должен иметь хорошее диапазонное распределение чисел. Это означает, что маленькие, средние и большие числа должны возвращаться случайным образом. ГПСЧ, который возвращает все маленькие числа, а затем все большие — предсказуем и приведет к предсказуемым результатам.
Свойство №4: Период циклического повторения значений ГПСЧ должен быть максимально большим. Все ГПСЧ являются циклическими, т.е. в какой-то момент последовательность генерируемых чисел начнет повторяться. Как упоминалось ранее, ГПСЧ являются детерминированными, и с одним значением ввода мы получим одно и то же значение вывода. Подумайте, что произойдет, когда ГПСЧ сгенерирует число, которое уже ранее было сгенерировано. С этого момента начнется дублирование последовательности чисел между первым и последующим появлением этого числа. Длина этой последовательности называется периодом.
Например, вот представлены первые 100 чисел, сгенерированные ГПСЧ с плохой периодичностью:
112 9 130 97 64
31 152 119 86 53
20 141 108 75 42
9 130 97 64 31
152 119 86 53 20
141 108 75 42 9
130 97 64 31 152
119 86 53 20 141
108 75 42 9 130
97 64 31 152 119
86 53 20 141 108
75 42 9 130 97
64 31 152 119 86
53 20 141 108 75
42 9 130 97 64
31 152 119 86 53
20 141 108 75 42
9 130 97 64 31
152 119 86 53 20
141 108 75 42 9
Заметили, что он сгенерировал 9 , как второе число, а затем как шестнадцатое? ГПСЧ застревает, генерируя последовательность между этими двумя 9-ми: 9-130-97-64-31-152-119-86-53-20-141-108-75-42- (повтор).
Хороший ГПСЧ должен иметь длинный период для всех стартовых чисел. Разработка алгоритма, соответствующего этому требованию, может быть чрезвычайно сложной — большинство ГПСЧ имеют длинные периоды для одних начальных чисел и короткие для других. Если пользователь выбрал начальное число, которое имеет короткий период, то и результаты будут соответствующие.
Несмотря на сложность разработки алгоритмов, отвечающих всем этим критериям, в этой области было проведено большое количество исследований, так как разные ГПСЧ активно используются в важных отраслях науки.
Почему rand() является посредственным ГПСЧ?
Алгоритм, используемый для реализации rand(), может варьироваться в разных компиляторах, и, соответственно, результаты также могут быть разными. В большинстве реализаций rand() используется Линейный Конгруэнтный Метод (сокр. «ЛКМ»). Если вы посмотрите на первый пример в этом уроке, то заметите, что там, на самом деле, используется ЛКМ, хоть и с намеренно подобранными плохими константами.
Одним из основных недостатков функции rand() является то, что RAND_MAX обычно устанавливается как 32767 (15-битное значение). Это означает, что если вы захотите сгенерировать числа в более широком диапазоне (например, 32-битные целые числа), то функция rand() не подойдет. Кроме того, она не подойдет, если вы захотите сгенерировать случайные числа типа с плавающей запятой (например, между 0.0 и 1.0 ), что часто используется в статистическом моделировании. Наконец, функция rand() имеет относительно короткий период по сравнению с другими алгоритмами.
Тем не менее, этот алгоритм отлично подходит для изучения программирования и для программ, в которых высококлассный ГПСЧ не является необходимостью.
Для приложений, где требуется высококлассный ГПСЧ, рекомендуется использовать алгоритм Вихрь Мерсенна (англ. «Mersenne Twister»), который генерирует отличные результаты и относительно прост в использовании.
Отладка программ, использующих случайные числа
Программы, которые используют случайные числа, трудно отлаживать, так как при каждом запуске такой программы мы будем получать разные результаты. А чтобы успешно проводить отладку программ, нужно удостовериться, что наша программа выполняется одинаково при каждом её запуске. Таким образом, мы сможем быстро узнать расположение ошибки и изолировать этот участок кода.
Поэтому, проводя отладку программы, полезно использовать в качестве стартового числа (с использованием функции srand()) определенное значение (например, 0 ), которое вызовет ошибочное поведение программы. Это будет гарантией того, что наша программа каждый раз генерирует одни и те же результаты (что значительно облегчит процесс отладки). После того, как мы найдем и исправим ошибку, мы сможем снова использовать системные часы для генерации рандомных результатов.
Рандомные числа в C++11
В C++11 добавили тонну нового функционала для генерации случайных чисел, включая алгоритм Вихрь Мерсенна, а также разные виды генераторов случайных чисел (например, равномерные, генератор Poisson и пр.). Доступ к ним осуществляется через подключение заголовочного файла random. Вот пример генерации случайных чисел в C++11 с использованием Вихря Мерсенна:
Источник
Генерация случайных чисел в языке Си
Пожалуйста, приостановите работу AdBlock на этом сайте.
Иногда может возникнуть необходимость в генерации случайных чисел. Простой пример.
Пример: Определение победителя в конкурсе репостов.
Имеется список из 53 человек. Необходимо выбрать из них победителя. Если вы выберете его самостоятельно, то вас могут обвинить в предвзятости. Поэтому вы решили написать программу. Она будет работать следующим образом. Вы вводите количество участников N , после чего программа выводит одно число – номер победителя.
Как получить число от игрока, вам уже известно. А вот как заставить компьютер загадать случайное число? В этом уроке вы этому научитесь.
Функция rand().
Данная функция возвращает случайное целое число в диапазоне от нуля до RAND_MAX . RAND_MAX это специальная константа языка Си, в которой содержится максимальное целое число, которое может быть возвращено функцией rand() .
Функция rand() определена в заголовочном файле stdlib.h . Поэтому, если хотите использовать rand в своей программе, не забудьте подключить этот заголовочный файл. Константа RAND_MAX тоже определена в этом файле. Вы можете найти этот файл у себя на компьютере и посмотреть её значение.
Давайте посмотрим на эту функцию в действии. Запустим следующий код:
Должно получиться что-то вроде этого.
Рис.1 Пять случайных чисел, сгенерированных функцийе rand
Но нам бы хотелось получить числа от 1 до 53 , а не всё подряд. Ниже описано несколько трюков, позволяющих наложить ограничения на функцию rand() .
Ограничить случайные числа сверху.
Кто в школе ждал момента, когда ему пригодится математика, приготовьтесь. Этот момент наступил. Чтобы ограничить сверху случайные числа, можно воспользоваться операцией получения остатка от деления, которую вы изучили в прошлом уроке. Наверное вы знаете, что остаток от деления на числа K всегда меньше числа K . Например, при делении на 4 могут получиться остатки 0, 1, 2 и 3 . Поэтому если вы хотите ограничить сверху случайные числа числом K , то просто возьмите остаток от деления на K . Вот так:
Рис.2 Пять случайных чисел меньше 100
Ограничить числа снизу.
Функция rand возвращает случайные числа из отрезка [0, RAND_MAX] . А что если нам нужны только числа большие числа M (например, 1000 )? Как быть? Всё просто. Просто прибавим к тому, что вернула функция rand, наше значение M . Тогда если функция вернёт 0 , итоговый ответ будет M , если 2394 , то итоговый ответ будет M + 2394 . Этим действием мы как бы сдвигаем все числа на M единиц вперёд.
Задать границы функции rand сверху и снизу.
Например, получить числа от 80 до 100 . Кажется, нужно просто объединить два способа, которые приведены выше. Получим что-то вроде этого:
Попробуйте запустить эту программу. Удивлены?
Да, такой способ работать не будет. Давайте прокрутим эту программу руками, чтобы убедиться в том, что мы допустили ошибку. Допустим rand() вернула число 143 . Остаток от деления на 100 равен 43 . Дальше 80 + 43 = 123 . Значит такой способ не работает. Подобная конструкция выдаст числа от 80 до 179 .
Давайте разберём по действиям наше выражение. rand()%100 может выдать числа от 0 до 99 включительно. Т.е. из отрезка [0; 99] .
Операция + 80 сдвигает наш отрезок на 80 единиц вправо. Получаем [80; 179] .
Как видим, проблема у нас заключается в правой границе отрезка, она сдвинута вправо на 79 единиц. Это наше исходное число 80 минус 1 . Давайте наведём порядок и сдвинем правую границу назад: 80 + rand()%(100 — 80 + 1) . Тогда всё должно сработать как надо.
В общем случае если нам нужно получить числа из отрезка [A;B] , то необходимо воспользоваться следующей конструкцией:
A + rand()%(B-A+1) .
Согласно этой формуле перепишем нашу последнюю программу:
Рис.3 Случайные числа из диапазона [80;100]
Ну вот, теперь вы можете решить исходную задачу урока. Сгенерировать число из отрезка [1; N] . Или не можете?
Но прежде ещё немного полезной информации. Запустите последнюю программу три раза подряд и записывайте себе случайные числа, которые она генерирует. Заметили?
Функция srand().
Да, каждый раз появляются одни и те же одинаковые числа. «Так себе генератор!» – скажете вы. И будете не совсем правы. Действительно, генерируются всё время одинаковые числа. Но мы можем на это повлиять, для этого используется функция srand() , которая также определена в заголовочном файле stdlib.h . Она инициализирует генератор случайных чисел начальным числом.
Скомпилируйте и запустите несколько раз вот эту программу:
Теперь поменяйте аргумент функции srand() на другое число (надеюсь вы ещё не забыли, что такое аргумент функции?) и снова скомпилируйте и запустите программу. Последовательность чисел должна измениться. Как только мы меняем аргумент в функции srand – меняется и последовательность. Не очень практично, не правда ли? Чтобы изменить последовательность, нужно перекомпилировать программу. Вот бы это число туда подставлялось автоматически.
И это можно сделать. Например, воспользуемся функцией time() , которая определена в заголовочном файле time.h . Данная функция, если ей в качестве аргумента передать NULL , возвращает количество секунд, прошедших c 1 января 1970 года . Вот посмотрите, как это делается.
Вы спросите, а что такое NULL ? Резонный вопрос. А я вам пока отвечу, что это специальное зарезервированное слово такое. Могу ещё сказать, что им обозначает нулевой указатель, но т.к. это для вас никакой информации не несёт, то на данный момент рекомендую об этом не думать. А просто запомнить как некоторый хитрый трюк. В будущих уроках мы остановимся на этой штуке поподробнее.
Практика
Решите предложенные задачи. Для удобства работы сразу переходите в полноэкранный режим
Исследовательские задачи для хакеров:
- В каких ситуациях ещё может пригодиться генерация случайных чисел? Напишите ваши варианты в комментарии к этому уроку.
- Напишите программу, которая выводит на экран значение целочисленной константы RAND_MAX. Найдите файл stdlib.h на вашем компьютере, найдите значение этой константы в этом файле.
- Найдите в интернете описание функций, которые определены в заголовочном файле time.h Вы, конечно, ещё не сможете ими пользоваться, но знать, что такие функции есть, всё равно нужно. Ведь когда-то настанет момент, когда ваших знаний будет достаточно для их использования.
- Числа, генерируемые функцией rand(), имеют равномерное распределение. Это значит, что если запускать функцию rand очень много раз и каждый раз записывать, какое число выпало, то количество выпадения различных чисел будет одинаковым. Например, если генерировать только числа 0 и 1, то через 100 запусков примерно 50 раз выпадет ноль и 50 раз единичка. Обратите внимание, что я говорю примерно. Может быть, например, 49 и 51, или 53 и 47. Если рассматривать это в отношении к общему числу запусков, получим (49/100 и 51/100 или 53/100 и 47/100 соответственно). Но чем больше экспериментов мы проведём, тем ближе отношение количество единичек к количеству испытаний будет стремиться к 1/2. Проведите самостоятельно эксперимент с 10, 50 и 100 запусками. Это муторно и долго, если делать руками, но что поделать? В будущем мы напишем программу, чтобы проверить свойство равномерности распределения наших случайных чисел.
Источник